Explicit Formulas for Estimating Trace of Reduced Density Matrix Powers via Single-Circuit Measurement Probabilities

IF 4.3 Q1 OPTICS
Rui-Qi Zhang, Xiao-Qi Liu, Jing Wang, Ming Li, Shu-Qian Shen, Shao-Ming Fei
{"title":"Explicit Formulas for Estimating Trace of Reduced Density Matrix Powers via Single-Circuit Measurement Probabilities","authors":"Rui-Qi Zhang,&nbsp;Xiao-Qi Liu,&nbsp;Jing Wang,&nbsp;Ming Li,&nbsp;Shu-Qian Shen,&nbsp;Shao-Ming Fei","doi":"10.1002/qute.202500376","DOIUrl":null,"url":null,"abstract":"<p>In the fields of quantum mechanics and quantum information science, the traces of reduced density matrix powers play a crucial role in the study of quantum systems and have numerous important applications. In this study, a universal framework is proposed to simultaneously estimate the traces of the 2nd to the <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>th powers of a reduced density matrix using a single quantum circuit with <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> copies of the quantum state. Specifically, this approach leverages the controlled SWAP test and establishes explicit formulas connecting measurement probabilities to these traces. Further, two algorithms are developed: a purely quantum method and a hybrid quantum-classical approach combining Newton–Girard iteration. Rigorous analysis via Hoeffding inequality demonstrates the method's efficiency, requiring only <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>=</mo>\n <mi>O</mi>\n <mfenced>\n <mfrac>\n <mn>1</mn>\n <msup>\n <mi>ε</mi>\n <mn>2</mn>\n </msup>\n </mfrac>\n <mi>log</mi>\n <mrow>\n <mo>(</mo>\n <mfrac>\n <mi>n</mi>\n <mi>δ</mi>\n </mfrac>\n <mo>)</mo>\n </mrow>\n </mfenced>\n </mrow>\n <annotation>$M=O\\left(\\frac{1}{\\epsilon ^2}\\log (\\frac{n}{\\delta })\\right)$</annotation>\n </semantics></math> measurements to achieve precision <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\epsilon$</annotation>\n </semantics></math> with confidence <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mi>δ</mi>\n </mrow>\n <annotation>$1-\\delta$</annotation>\n </semantics></math>. Additionally, various applications are explored including the estimation of nonlinear functions and the representation of entanglement measures. Numerical simulations are conducted for two maximally entangled states, the GHZ state and the W state, to validate the proposed method.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/qute.202500376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the fields of quantum mechanics and quantum information science, the traces of reduced density matrix powers play a crucial role in the study of quantum systems and have numerous important applications. In this study, a universal framework is proposed to simultaneously estimate the traces of the 2nd to the n $n$ th powers of a reduced density matrix using a single quantum circuit with n $n$ copies of the quantum state. Specifically, this approach leverages the controlled SWAP test and establishes explicit formulas connecting measurement probabilities to these traces. Further, two algorithms are developed: a purely quantum method and a hybrid quantum-classical approach combining Newton–Girard iteration. Rigorous analysis via Hoeffding inequality demonstrates the method's efficiency, requiring only M = O 1 ε 2 log ( n δ ) $M=O\left(\frac{1}{\epsilon ^2}\log (\frac{n}{\delta })\right)$ measurements to achieve precision ε $\epsilon$ with confidence 1 δ $1-\delta$ . Additionally, various applications are explored including the estimation of nonlinear functions and the representation of entanglement measures. Numerical simulations are conducted for two maximally entangled states, the GHZ state and the W state, to validate the proposed method.

Abstract Image

Abstract Image

利用单路测量概率估计密度矩阵幂约简轨迹的显式公式
在量子力学和量子信息科学领域,密度矩阵幂的降维轨迹在量子系统的研究中起着至关重要的作用,具有许多重要的应用。在这项研究中,提出了一个通用框架,使用具有n $n$个量子态副本的单个量子电路同时估计约简密度矩阵的2到n $n$次幂的迹线。具体来说,这种方法利用了受控的SWAP测试,并建立了将测量概率与这些轨迹连接起来的显式公式。在此基础上,提出了纯量子方法和结合牛顿-吉拉德迭代的混合量子经典方法。通过Hoeffding不等式的严格分析证明了该方法的有效性。只要求M = 0 1 ε 2 log (n δ)$M=O\left(\frac{1}{\epsilon ^2}\log (\frac{n}{\delta })\right)$测量,达到精度ε $\epsilon$,置信度为1−δ $1-\delta$。此外,还探讨了各种应用,包括非线性函数的估计和纠缠度量的表示。通过对两种最大纠缠态(GHZ态和W态)的数值仿真,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信