Focused Xe-Ion Plasma Beam Milling of Coumarin-153 Single Crystals Into Photonic Cavities–Experimental and Theoretical Investigations

IF 2.8
Melchi Chosenyah, Vuppu Vinay Pradeep, Vladimir Novikov, R. Sai Prasad Goud, Tatiana Murzina, Rajadurai Chandrasekar
{"title":"Focused Xe-Ion Plasma Beam Milling of Coumarin-153 Single Crystals Into Photonic Cavities–Experimental and Theoretical Investigations","authors":"Melchi Chosenyah,&nbsp;Vuppu Vinay Pradeep,&nbsp;Vladimir Novikov,&nbsp;R. Sai Prasad Goud,&nbsp;Tatiana Murzina,&nbsp;Rajadurai Chandrasekar","doi":"10.1002/apxr.202500013","DOIUrl":null,"url":null,"abstract":"<p>Focused ion beam (FIB) milling with Ga-ions enabled early success in fabricating photonic cavities in organic crystals, advancing <i>crystal photonic foundry</i>. However, Ga-ion milling often causes contamination and amorphization. In contrast, Xe-ion plasma milling, with its inertness, faster milling, smoother finishes, and reduced sidewall damage, presents a promising alternative. This study introduces Xe-ion plasma milling for coumarin-153 dye crystals, to fabricate precise disc (DR1 and DR2) and ring resonators (RR1 and RR2). These resonators, crucial for sensors and photonic integrated circuits, support sustained light recirculation and enhanced optical signals, evident as resonant modes in photoluminescence spectra. Finite element analysis confirms the expected resonant optical modes and strong optical field localization near the resonators' outer boundaries, highlighting the FIB milling potential for advancing organic crystal photonics.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Focused ion beam (FIB) milling with Ga-ions enabled early success in fabricating photonic cavities in organic crystals, advancing crystal photonic foundry. However, Ga-ion milling often causes contamination and amorphization. In contrast, Xe-ion plasma milling, with its inertness, faster milling, smoother finishes, and reduced sidewall damage, presents a promising alternative. This study introduces Xe-ion plasma milling for coumarin-153 dye crystals, to fabricate precise disc (DR1 and DR2) and ring resonators (RR1 and RR2). These resonators, crucial for sensors and photonic integrated circuits, support sustained light recirculation and enhanced optical signals, evident as resonant modes in photoluminescence spectra. Finite element analysis confirms the expected resonant optical modes and strong optical field localization near the resonators' outer boundaries, highlighting the FIB milling potential for advancing organic crystal photonics.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

聚焦氙离子等离子体束铣削香豆素-153单晶进入光子腔的实验和理论研究
聚焦离子束(FIB)与镓离子的铣削使在有机晶体中制造光子腔的早期成功,推进了晶体光子铸造。然而,镓离子铣削经常造成污染和非晶化。相比之下,氙离子等离子铣削具有惰性、铣削速度更快、光面更光滑、侧壁损伤更小等优点,是一种很有前途的选择。本研究介绍了香豆素-153染料晶体的氙离子等离子铣床,以制造精确的圆盘(DR1和DR2)和环形谐振器(RR1和RR2)。这些谐振器对传感器和光子集成电路至关重要,支持持续的光再循环和增强的光信号,在光致发光光谱中表现为谐振模式。有限元分析证实了预期的谐振光学模式和谐振器外边界附近的强光场定位,突出了FIB铣削在推进有机晶体光子学方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信