Numerical optimization of TiO2/SnO2 bilayer electron transport layers for enhanced perovskite solar cell performance

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haoran Ma, Yajun Xu, Jun Zhao, Jun Wu, Luanhong Sun, Jinjie Zheng, Wei Zhang
{"title":"Numerical optimization of TiO2/SnO2 bilayer electron transport layers for enhanced perovskite solar cell performance","authors":"Haoran Ma,&nbsp;Yajun Xu,&nbsp;Jun Zhao,&nbsp;Jun Wu,&nbsp;Luanhong Sun,&nbsp;Jinjie Zheng,&nbsp;Wei Zhang","doi":"10.1186/s11671-025-04357-w","DOIUrl":null,"url":null,"abstract":"<div><p>To improve charge extraction and address UV-induced degradation in perovskite solar cells, we propose and numerically evaluate a TiO<sub>2</sub>/SnO<sub>2</sub> bilayer electron transport layer (ETL) architecture. Using physics-based simulation, we systematically analyze the influence of individual and combined ETL thicknesses on key parameters. The results identify an optimal configuration of 100 nm TiO<sub>2</sub> and 20 nm SnO<sub>2</sub>, which minimizes interfacial recombination and enhances electron transport. Furthermore, CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> is employed as a lead-free absorber layer. Simulation results demonstrate a notable efficiency improvement upto 20.80%. The experimental results verified that the bi-layer Sn-based perovskite can achieve a conversion efficiency of 10.3%. This study highlights the potential of simulation-guided design in optimizing multilayer ETL structures and advancing environmentally friendly, high-efficiency perovskite photovoltaics.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04357-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04357-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To improve charge extraction and address UV-induced degradation in perovskite solar cells, we propose and numerically evaluate a TiO2/SnO2 bilayer electron transport layer (ETL) architecture. Using physics-based simulation, we systematically analyze the influence of individual and combined ETL thicknesses on key parameters. The results identify an optimal configuration of 100 nm TiO2 and 20 nm SnO2, which minimizes interfacial recombination and enhances electron transport. Furthermore, CH3NH3SnI3 is employed as a lead-free absorber layer. Simulation results demonstrate a notable efficiency improvement upto 20.80%. The experimental results verified that the bi-layer Sn-based perovskite can achieve a conversion efficiency of 10.3%. This study highlights the potential of simulation-guided design in optimizing multilayer ETL structures and advancing environmentally friendly, high-efficiency perovskite photovoltaics.

TiO2/SnO2双层电子传输层对钙钛矿太阳能电池性能的数值优化
为了改善钙钛矿太阳能电池的电荷提取和解决紫外线诱导的降解问题,我们提出并数值评估了TiO2/SnO2双层电子传输层(ETL)结构。采用物理仿真的方法,系统地分析了单个和组合ETL厚度对关键参数的影响。结果确定了100 nm TiO2和20 nm SnO2的最佳结构,该结构最大限度地减少了界面重组并增强了电子传递。此外,CH3NH3SnI3被用作无铅吸收层。仿真结果表明,该方法的效率提高了20.80%。实验结果证实,双层锡基钙钛矿的转化效率可达10.3%。这项研究强调了模拟引导设计在优化多层ETL结构和推进环保、高效钙钛矿光伏发电方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信