A waveguide amplitude modulator based on a graphene plasmonic resonance

IF 4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiří Petráček, Jiří Čtyroký, Vladimír Kuzmiak
{"title":"A waveguide amplitude modulator based on a graphene plasmonic resonance","authors":"Jiří Petráček,&nbsp;Jiří Čtyroký,&nbsp;Vladimír Kuzmiak","doi":"10.1007/s11082-025-08442-3","DOIUrl":null,"url":null,"abstract":"<div><p>Photonic waveguides with graphene can enable resonant coupling of the waveguide mode and the graphene plasmonic modes. We demonstrate theoretically that the plasmonic resonance in the hybrid waveguides can be significantly enhanced by employing a graphene nanoribbon with a deep subwavelength width when a lower-order graphene nanoribbon mode and a mode of a bare waveguide are efficiently coupled. A further increase is possible when a single graphene stripe is replaced by a finite array of graphene nanoribbons. This effect may provide a feasible platform for an efficient amplitude modulation which can be employed in the design of specific devices such as low-power modulators, filters, or sensors.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11082-025-08442-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08442-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Photonic waveguides with graphene can enable resonant coupling of the waveguide mode and the graphene plasmonic modes. We demonstrate theoretically that the plasmonic resonance in the hybrid waveguides can be significantly enhanced by employing a graphene nanoribbon with a deep subwavelength width when a lower-order graphene nanoribbon mode and a mode of a bare waveguide are efficiently coupled. A further increase is possible when a single graphene stripe is replaced by a finite array of graphene nanoribbons. This effect may provide a feasible platform for an efficient amplitude modulation which can be employed in the design of specific devices such as low-power modulators, filters, or sensors.

基于石墨烯等离子体共振的波导调幅器
石墨烯光子波导可以实现波导模式和石墨烯等离子体模式的共振耦合。我们从理论上证明,当低阶石墨烯纳米带模式和裸波导模式有效耦合时,采用深亚波长宽度的石墨烯纳米带可以显著增强混合波导中的等离子体共振。当单个石墨烯条纹被有限的石墨烯纳米带阵列所取代时,进一步的增加是可能的。这种效应为有效的幅度调制提供了可行的平台,可用于设计诸如低功率调制器、滤波器或传感器等特定器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信