Alcina Johnson Sudagar , Piper Drebes , Elijah Thimsen
{"title":"Non-thermal atmospheric pressure plasma–liquid synthesis of organic acids in aqueous solution from carbon monoxide","authors":"Alcina Johnson Sudagar , Piper Drebes , Elijah Thimsen","doi":"10.1039/d5gc02035b","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims at understanding the conversion of CO to organic acids, namely oxalic acid and formic acid, using non-thermal atmospheric pressure plasma over aqueous solutions. CO exhibited significantly higher conversion to organic acids (more than 15×) compared to CO<sub>2</sub> under the same reaction conditions. The result bolsters a proposed two-step process for CO<sub>2</sub> fixation, whereby CO<sub>2</sub> is first converted to CO, and then CO is converted to organic acids. The organic acids produced from CO are intermediates in the water–gas shift (WGS) reaction of CO in the presence of an aqueous solution to dissolved CO<sub>2</sub> and hydrogen gas. Based on a simple thermodynamic analysis, the organic acid yield was increased by lowering the plasma–liquid reaction temperature using an ice bath to cool the reaction flask. The composition of the organic acids could be varied by changing the pH of the solution. Oxalate was formed in higher concentrations with increasing solution pH above the p<em>K</em><sub>a</sub> of the radical species (CO<sub>2</sub>)˙<sup>−</sup>. Below the p<em>K</em><sub>a</sub> value, formate was the exclusive organic acid formed. The production of formate has a rather weak pH dependence but is enhanced slightly at a basic pH above 10. Furthermore, at basic pH, the effect of electrolyte concentration comes into play. Higher electrolyte concentrations, leading to shorter electrolyte Debye lengths, resulted in lowered organic acid yields. The highest yields of organic acids obtained in our system were 122 mg L<sup>−1</sup> for oxalate and 77 mg L<sup>−1</sup> for formate at an optimum 1 mM NaOH concentration in the starting solution. This work is a successful pioneering example of CO to organic acids conversion using non-thermal plasmas, which opens the pathway for a promising two-step conversion process of CO<sub>2</sub> to organic acids.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 36","pages":"Pages 11055-11064"},"PeriodicalIF":9.2000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225007186","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work aims at understanding the conversion of CO to organic acids, namely oxalic acid and formic acid, using non-thermal atmospheric pressure plasma over aqueous solutions. CO exhibited significantly higher conversion to organic acids (more than 15×) compared to CO2 under the same reaction conditions. The result bolsters a proposed two-step process for CO2 fixation, whereby CO2 is first converted to CO, and then CO is converted to organic acids. The organic acids produced from CO are intermediates in the water–gas shift (WGS) reaction of CO in the presence of an aqueous solution to dissolved CO2 and hydrogen gas. Based on a simple thermodynamic analysis, the organic acid yield was increased by lowering the plasma–liquid reaction temperature using an ice bath to cool the reaction flask. The composition of the organic acids could be varied by changing the pH of the solution. Oxalate was formed in higher concentrations with increasing solution pH above the pKa of the radical species (CO2)˙−. Below the pKa value, formate was the exclusive organic acid formed. The production of formate has a rather weak pH dependence but is enhanced slightly at a basic pH above 10. Furthermore, at basic pH, the effect of electrolyte concentration comes into play. Higher electrolyte concentrations, leading to shorter electrolyte Debye lengths, resulted in lowered organic acid yields. The highest yields of organic acids obtained in our system were 122 mg L−1 for oxalate and 77 mg L−1 for formate at an optimum 1 mM NaOH concentration in the starting solution. This work is a successful pioneering example of CO to organic acids conversion using non-thermal plasmas, which opens the pathway for a promising two-step conversion process of CO2 to organic acids.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.