{"title":"FLCL: Feature-Level Contrastive Learning for Few-Shot Image Classification","authors":"Wenming Cao;Jiewen Zeng;Qifan Liu","doi":"10.1109/TETC.2025.3546366","DOIUrl":null,"url":null,"abstract":"Few-shot classification is the task of recognizing unseen classes using a limited number of samples. In this paper, we propose a new contrastive learning method called Feature-Level Contrastive Learning (FLCL). FLCL conducts contrastive learning at the feature level and leverages the subtle relationships between positive and negative samples to achieve more effective classification. Additionally, we address the challenges of requiring a large number of negative samples and the difficulty of selecting high-quality negative samples in traditional contrastive learning methods. For feature learning, we design a Feature Enhancement Coding (FEC) module to analyze the interactions and correlations between nonlinear features, enhancing the quality of feature representations. In the metric stage, we propose a centered hypersphere projection metric to map feature vectors onto the hypersphere, improving the comparison between the support and query sets. Experimental results on four few-shot classification benchmark datasets demonstrate that our method, while simple in design, outperforms previous methods and achieves state-of-the-art performance. A detailed ablation study further confirms the effectiveness of each component of our model.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"13 3","pages":"935-946"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10919143/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Few-shot classification is the task of recognizing unseen classes using a limited number of samples. In this paper, we propose a new contrastive learning method called Feature-Level Contrastive Learning (FLCL). FLCL conducts contrastive learning at the feature level and leverages the subtle relationships between positive and negative samples to achieve more effective classification. Additionally, we address the challenges of requiring a large number of negative samples and the difficulty of selecting high-quality negative samples in traditional contrastive learning methods. For feature learning, we design a Feature Enhancement Coding (FEC) module to analyze the interactions and correlations between nonlinear features, enhancing the quality of feature representations. In the metric stage, we propose a centered hypersphere projection metric to map feature vectors onto the hypersphere, improving the comparison between the support and query sets. Experimental results on four few-shot classification benchmark datasets demonstrate that our method, while simple in design, outperforms previous methods and achieves state-of-the-art performance. A detailed ablation study further confirms the effectiveness of each component of our model.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.