Relativistic atomic structure and electron impact excitation calculations for K-like Kr17+ and Xe35+: A detailed study for fusion plasma relevance

IF 2.8 3区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
Nitish Ghosh, Lalita Sharma
{"title":"Relativistic atomic structure and electron impact excitation calculations for K-like Kr17+ and Xe35+: A detailed study for fusion plasma relevance","authors":"Nitish Ghosh,&nbsp;Lalita Sharma","doi":"10.1016/j.radphyschem.2025.113273","DOIUrl":null,"url":null,"abstract":"<div><div>We present a detailed investigation of the atomic structure and electron-impact excitation properties of K-like Kr<span><math><msup><mrow></mrow><mrow><mn>17</mn><mo>+</mo></mrow></msup></math></span> and Xe<span><math><msup><mrow></mrow><mrow><mn>35</mn><mo>+</mo></mrow></msup></math></span> ions, focusing on the fine-structure states arising from the configurations <span><math><mrow><mn>3</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup><mn>3</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>6</mn></mrow></msup><mn>3</mn><mi>d</mi></mrow></math></span>, <span><math><mrow><mn>3</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup><mn>3</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>5</mn></mrow></msup><mn>3</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mn>3</mn><mi>s</mi><mn>3</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>6</mn></mrow></msup><mn>3</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, and <span><math><mrow><mn>3</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup><mn>3</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msup><mn>3</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>. Calculations are performed using the fully relativistic multiconfiguration Dirac-Hartree–Fock (MCDHF) method, as implemented in the GRASP2018 code, with inclusion of the Breit interaction and quantum electrodynamic corrections. We report energy levels for the lowest 90 states and provide transition data for E1, M1, E2, and M2 transitions among these levels. The impact of virtual orbital choices on the generated wavefunctions is analyzed. To assess the reliability of our results, we estimate uncertainties in line strengths from the MCDHF calculations. Additionally, we perform independent calculations using many-body perturbation theory (MBPT) within the Flexible Atomic Code to validate our findings. The close agreement between MCDHF and MBPT results supports the robustness of our predictions. Furthermore, electron-impact excitation cross sections are calculated using relativistic distorted wave theory for transitions originating from the ground and first excited levels, spanning incident electron energies up to 5 keV for Kr<span><math><msup><mrow></mrow><mrow><mn>17</mn><mo>+</mo></mrow></msup></math></span> and 10 keV for Xe<span><math><msup><mrow></mrow><mrow><mn>35</mn><mo>+</mo></mrow></msup></math></span>. The corresponding rate coefficients are derived for Maxwellian electron energy distributions over electron temperature ranges of 15–150 eV for Kr<span><math><msup><mrow></mrow><mrow><mn>17</mn><mo>+</mo></mrow></msup></math></span> and 25–200 eV for Xe<span><math><msup><mrow></mrow><mrow><mn>35</mn><mo>+</mo></mrow></msup></math></span>. We also provide fitting parameters for these rate coefficients to facilitate their use in plasma modeling. The present data set addresses the lack of atomic data for highly charged K-like Kr<span><math><msup><mrow></mrow><mrow><mn>17</mn><mo>+</mo></mrow></msup></math></span> and Xe<span><math><msup><mrow></mrow><mrow><mn>35</mn><mo>+</mo></mrow></msup></math></span> and offers reliable benchmarks for theoretical and diagnostic applications in plasma physics.</div></div>","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"239 ","pages":"Article 113273"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969806X25007650","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a detailed investigation of the atomic structure and electron-impact excitation properties of K-like Kr17+ and Xe35+ ions, focusing on the fine-structure states arising from the configurations 3s23p63d, 3s23p53d2, 3s3p63d2, and 3s23p43d3. Calculations are performed using the fully relativistic multiconfiguration Dirac-Hartree–Fock (MCDHF) method, as implemented in the GRASP2018 code, with inclusion of the Breit interaction and quantum electrodynamic corrections. We report energy levels for the lowest 90 states and provide transition data for E1, M1, E2, and M2 transitions among these levels. The impact of virtual orbital choices on the generated wavefunctions is analyzed. To assess the reliability of our results, we estimate uncertainties in line strengths from the MCDHF calculations. Additionally, we perform independent calculations using many-body perturbation theory (MBPT) within the Flexible Atomic Code to validate our findings. The close agreement between MCDHF and MBPT results supports the robustness of our predictions. Furthermore, electron-impact excitation cross sections are calculated using relativistic distorted wave theory for transitions originating from the ground and first excited levels, spanning incident electron energies up to 5 keV for Kr17+ and 10 keV for Xe35+. The corresponding rate coefficients are derived for Maxwellian electron energy distributions over electron temperature ranges of 15–150 eV for Kr17+ and 25–200 eV for Xe35+. We also provide fitting parameters for these rate coefficients to facilitate their use in plasma modeling. The present data set addresses the lack of atomic data for highly charged K-like Kr17+ and Xe35+ and offers reliable benchmarks for theoretical and diagnostic applications in plasma physics.
类k Kr17+和Xe35+的相对论原子结构和电子冲击激发计算:核聚变等离子体相关性的详细研究
我们详细研究了类k Kr17+和Xe35+离子的原子结构和电子冲击激发特性,重点研究了3s23p63d、3s23p53d2、3s3p63d2和3s23p43d3这四种构型所产生的精细结构态。计算使用GRASP2018代码中实现的全相对论多组态狄拉克-哈特里-福克(MCDHF)方法进行,包括Breit相互作用和量子电动力学修正。我们报告了最低90个态的能级,并提供了这些能级之间E1、M1、E2和M2能级的跃迁数据。分析了虚拟轨道选择对生成波函数的影响。为了评估我们结果的可靠性,我们从MCDHF计算中估计了线强度的不确定性。此外,我们在柔性原子代码中使用多体微扰理论(MBPT)进行独立计算来验证我们的发现。MCDHF和MBPT结果之间的密切一致支持了我们预测的稳健性。此外,利用相对论畸变波理论计算了源自地面和第一激发能级的跃迁的电子碰撞激发截面,Kr17+的入射电子能量高达5 keV, Xe35+的入射电子能量高达10 keV。推导了Kr17+在15 ~ 150 eV和Xe35+在25 ~ 200 eV电子温度范围内的麦克斯韦电子能量分布的速率系数。我们还提供了这些速率系数的拟合参数,以方便它们在等离子体建模中的使用。目前的数据集解决了高电荷k -类Kr17+和Xe35+原子数据的缺乏,并为等离子体物理的理论和诊断应用提供了可靠的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiation Physics and Chemistry
Radiation Physics and Chemistry 化学-核科学技术
CiteScore
5.60
自引率
17.20%
发文量
574
审稿时长
12 weeks
期刊介绍: Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信