Unsupervised instance segmentation with superpixels

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Cuong Manh Hoang
{"title":"Unsupervised instance segmentation with superpixels","authors":"Cuong Manh Hoang","doi":"10.1016/j.patcog.2025.112402","DOIUrl":null,"url":null,"abstract":"<div><div>Instance segmentation is essential for numerous computer vision applications, including robotics, human-computer interaction, and autonomous driving. Currently, popular models bring impressive performance in instance segmentation by training with a large number of human annotations, which are costly to collect. For this reason, we present a new framework that efficiently and effectively segments objects without the need for human annotations. Firstly, a MultiCut algorithm is applied to self-supervised features for coarse mask segmentation. Then, a mask filter is employed to obtain high-quality coarse masks. To train the segmentation network, we compute a novel superpixel-guided mask loss, comprising hard loss and soft loss, with high-quality coarse masks and superpixels segmented from low-level image features. Lastly, a self-training process with a new adaptive loss is proposed to improve the quality of predicted masks. We conduct experiments on public datasets in instance segmentation and object detection to demonstrate the effectiveness of the proposed framework. The results show that the proposed framework outperforms previous state-of-the-art methods.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"172 ","pages":"Article 112402"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325010635","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Instance segmentation is essential for numerous computer vision applications, including robotics, human-computer interaction, and autonomous driving. Currently, popular models bring impressive performance in instance segmentation by training with a large number of human annotations, which are costly to collect. For this reason, we present a new framework that efficiently and effectively segments objects without the need for human annotations. Firstly, a MultiCut algorithm is applied to self-supervised features for coarse mask segmentation. Then, a mask filter is employed to obtain high-quality coarse masks. To train the segmentation network, we compute a novel superpixel-guided mask loss, comprising hard loss and soft loss, with high-quality coarse masks and superpixels segmented from low-level image features. Lastly, a self-training process with a new adaptive loss is proposed to improve the quality of predicted masks. We conduct experiments on public datasets in instance segmentation and object detection to demonstrate the effectiveness of the proposed framework. The results show that the proposed framework outperforms previous state-of-the-art methods.

Abstract Image

使用超像素的无监督实例分割
实例分割对于许多计算机视觉应用是必不可少的,包括机器人、人机交互和自动驾驶。目前,流行的模型通过使用大量人工注释进行训练,在实例分割方面带来了令人印象深刻的性能,这些注释的收集成本很高。出于这个原因,我们提出了一个新的框架,它可以高效地分割对象,而不需要人工注释。首先,将multiccut算法应用于自监督特征进行粗掩码分割;然后,利用掩码滤波器获得高质量的粗掩码。为了训练分割网络,我们计算了一种新的超像素引导掩码损失,包括硬损失和软损失,使用高质量的粗掩码和从低水平图像特征中分割的超像素。最后,提出了一种新的自适应损失的自训练过程,以提高预测掩模的质量。我们在公共数据集上进行了实例分割和目标检测实验,以证明所提出框架的有效性。结果表明,所提出的框架优于先前的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信