Sustainable One-Pot Metal-Free Oxidative Carboxylation of Styrenes with Molecular Oxygen and Carbon Dioxide

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ka Loi Lin,  and , Thomas Ernst Müller*, 
{"title":"Sustainable One-Pot Metal-Free Oxidative Carboxylation of Styrenes with Molecular Oxygen and Carbon Dioxide","authors":"Ka Loi Lin,&nbsp; and ,&nbsp;Thomas Ernst Müller*,&nbsp;","doi":"10.1021/acssuschemeng.5c03968","DOIUrl":null,"url":null,"abstract":"<p >The development of sustainable, metal-free catalytic systems is pivotal for advancing green chemistry and CO<sub>2</sub> utilization. To avoid using transition metal catalysts, this study proposes an optimized one-pot oxidative carboxylation of styrene into styrene carbonate, applying molecular oxygen as a benign oxidant and tetra-<i>n</i>-butylammonium bromide ([Bu<sub>4</sub>N]<sup>+</sup>Br<sup>–</sup>) as the sole catalyst. This strategy integrates Mukaiyama epoxidation and CO<sub>2</sub> cycloaddition in a single step, with isobutyraldehyde as a coreagent to enable mild epoxidation conditions. Under optimized parameters (10 mol % [Bu<sub>4</sub>N]<sup>+</sup>Br<sup>–</sup>, 0.8 MPa O<sub>2</sub>, 4.5 MPa CO<sub>2</sub>, 130 °C), styrene carbonate is obtained in a 61% yield with high selectivity. A comprehensive study of reaction parameters, including O<sub>2</sub> and CO<sub>2</sub> partial pressures, catalyst loading, temperature, and solvent effects, highlights the critical role of phase equilibrium as investigated using high-pressure view cell experiments. Kinetic analysis shows that styrene epoxidation proceeds via a high-energy radical-chain pathway, where hydrogen abstraction and peroxy-radical propagation constitute the rate-limiting steps (<i>E</i><sub><i>a</i></sub> = 124.8 kJ·mol<sup>–1</sup>), whereas CO<sub>2</sub> cycloaddition to the resulting epoxide follows with a lower barrier (<i>E</i><sub><i>a</i></sub> = 91.2 kJ·mol<sup>–1</sup>). This metal-free transformation offers a viable and sustainable alternative to conventional cyclic carbonate synthesis, contributing to CO<sub>2</sub> valorization and green chemical manufacturing.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 36","pages":"14792–14803"},"PeriodicalIF":7.3000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c03968","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of sustainable, metal-free catalytic systems is pivotal for advancing green chemistry and CO2 utilization. To avoid using transition metal catalysts, this study proposes an optimized one-pot oxidative carboxylation of styrene into styrene carbonate, applying molecular oxygen as a benign oxidant and tetra-n-butylammonium bromide ([Bu4N]+Br) as the sole catalyst. This strategy integrates Mukaiyama epoxidation and CO2 cycloaddition in a single step, with isobutyraldehyde as a coreagent to enable mild epoxidation conditions. Under optimized parameters (10 mol % [Bu4N]+Br, 0.8 MPa O2, 4.5 MPa CO2, 130 °C), styrene carbonate is obtained in a 61% yield with high selectivity. A comprehensive study of reaction parameters, including O2 and CO2 partial pressures, catalyst loading, temperature, and solvent effects, highlights the critical role of phase equilibrium as investigated using high-pressure view cell experiments. Kinetic analysis shows that styrene epoxidation proceeds via a high-energy radical-chain pathway, where hydrogen abstraction and peroxy-radical propagation constitute the rate-limiting steps (Ea = 124.8 kJ·mol–1), whereas CO2 cycloaddition to the resulting epoxide follows with a lower barrier (Ea = 91.2 kJ·mol–1). This metal-free transformation offers a viable and sustainable alternative to conventional cyclic carbonate synthesis, contributing to CO2 valorization and green chemical manufacturing.

Abstract Image

苯乙烯与分子氧和二氧化碳的持续无金属氧化羧化反应
开发可持续的、无金属的催化系统是推进绿色化学和二氧化碳利用的关键。为避免使用过渡金属催化剂,本研究以分子氧为良性氧化剂,四正丁基溴化铵([Bu4N]+Br -)为唯一催化剂,提出了苯乙烯一锅氧化羧化制碳酸苯乙烯的优化工艺。该策略将Mukaiyama环氧化和CO2环加成在一个步骤中,以异丁醛作为辅助试剂,实现温和的环氧化条件。在优化条件下(10 mol % [Bu4N]+Br -, 0.8 MPa O2, 4.5 MPa CO2, 130℃),收率61%,选择性高。通过对反应参数的全面研究,包括O2和CO2分压、催化剂负载、温度和溶剂效应,强调了相平衡的关键作用。动力学分析表明,苯乙烯环氧化反应是通过高能自由基链途径进行的,其中氢的抽提和过氧自由基的传播是限速步骤(Ea = 124.8 kJ·mol-1),而二氧化碳环加成则是一个较低的势垒(Ea = 91.2 kJ·mol-1)。这种无金属的转变为传统的循环碳酸盐合成提供了一种可行和可持续的替代方案,有助于二氧化碳增值和绿色化学制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信