Spin Polarization and Interface Engineering Modulated Carrier Dynamics in NiO/Ni2+-Doped Cd0.5Zn0.5S Z-Scheme Heterojunctions for Enhanced Solar-Driven Hydrogen Evolution

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mei Dong, Wenjun Li*, Liang Geng, Ruixue Huang and Hongli Han, 
{"title":"Spin Polarization and Interface Engineering Modulated Carrier Dynamics in NiO/Ni2+-Doped Cd0.5Zn0.5S Z-Scheme Heterojunctions for Enhanced Solar-Driven Hydrogen Evolution","authors":"Mei Dong,&nbsp;Wenjun Li*,&nbsp;Liang Geng,&nbsp;Ruixue Huang and Hongli Han,&nbsp;","doi":"10.1021/acssuschemeng.5c06411","DOIUrl":null,"url":null,"abstract":"<p >Developing efficient Z-scheme photocatalysts with rapid interfacial charge transfer is critical yet challenging for solar-driven hydrogen production. This study proposes a bifunctional nickel engineering strategy that synergizes bulk doping and interfacial modulation in NiO/Ni<sup>2+</sup>-doped Cd<sub>0.5</sub>Zn<sub>0.5</sub>S (NiO/Ni-CZS) Z-scheme heterojunctions. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses confirm the formation of Ni–S covalent bonds between NiO and Ni-CZS, as well as the existence of Ni<sup>3+</sup>/Ni<sup>2+</sup> redox centers in the heterojunction. Lattice-doped Ni<sup>2+</sup> induces lattice distortion in CZS, which generates the spin-polarized electric field to drive the directional migration of photogenerated electrons and holes, thereby enhancing bulk charge separation efficiency. Moreover, the synergistic effect of the interfacial Ni–S covalent bonds and Ni<sup>3+</sup>/Ni<sup>2+</sup> redox centers establishes a dual channel of charge transfer, facilitating interfacial charge transport in the Z-scheme heterojunction. The optimized NiO/Ni-CZS exhibits an exceptional hydrogen evolution rate (5436.68 μmol·g<sup>–1</sup>·h<sup>–1</sup>), which is 3.0, 2.2, 1.9, and 200.5-fold higher than that of the pristine CZS, Ni-CZS, NiO/CZS, and NiO, respectively. Mott–Schottky and electron paramagnetic resonance (EPR) analysis reveal an efficient Z-scheme charge transfer pathway. This study provides a new idea for the rational design of high-efficiency Z-scheme heterojunction photocatalysts and reveals the crucial role of spin polarization and interface engineering in governing carrier separation at heterojunctions.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 36","pages":"15164–15176"},"PeriodicalIF":7.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c06411","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient Z-scheme photocatalysts with rapid interfacial charge transfer is critical yet challenging for solar-driven hydrogen production. This study proposes a bifunctional nickel engineering strategy that synergizes bulk doping and interfacial modulation in NiO/Ni2+-doped Cd0.5Zn0.5S (NiO/Ni-CZS) Z-scheme heterojunctions. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses confirm the formation of Ni–S covalent bonds between NiO and Ni-CZS, as well as the existence of Ni3+/Ni2+ redox centers in the heterojunction. Lattice-doped Ni2+ induces lattice distortion in CZS, which generates the spin-polarized electric field to drive the directional migration of photogenerated electrons and holes, thereby enhancing bulk charge separation efficiency. Moreover, the synergistic effect of the interfacial Ni–S covalent bonds and Ni3+/Ni2+ redox centers establishes a dual channel of charge transfer, facilitating interfacial charge transport in the Z-scheme heterojunction. The optimized NiO/Ni-CZS exhibits an exceptional hydrogen evolution rate (5436.68 μmol·g–1·h–1), which is 3.0, 2.2, 1.9, and 200.5-fold higher than that of the pristine CZS, Ni-CZS, NiO/CZS, and NiO, respectively. Mott–Schottky and electron paramagnetic resonance (EPR) analysis reveal an efficient Z-scheme charge transfer pathway. This study provides a new idea for the rational design of high-efficiency Z-scheme heterojunction photocatalysts and reveals the crucial role of spin polarization and interface engineering in governing carrier separation at heterojunctions.

Abstract Image

NiO/Ni2+掺杂Cd0.5Zn0.5S Z-Scheme异质结中自旋极化和界面工程调制载流子动力学
开发具有快速界面电荷转移的高效z型光催化剂对于太阳能驱动制氢至关重要,但也具有挑战性。本研究提出了NiO/Ni2+掺杂Cd0.5Zn0.5S (NiO/Ni-CZS) Z-scheme异质结中本体掺杂和界面调制协同作用的双功能镍工程策略。拉曼光谱和x射线光电子能谱(XPS)分析证实了NiO和Ni-CZS之间形成了Ni-S共价键,异质结中存在Ni3+/Ni2+氧化还原中心。晶格掺杂Ni2+在cjs中引起晶格畸变,产生自旋极化电场,驱动光生电子和空穴的定向迁移,从而提高体电荷分离效率。此外,界面Ni-S共价键和Ni3+/Ni2+氧化还原中心的协同作用建立了电荷转移的双通道,促进了z -图式异质结界面电荷的传输。优化后的NiO/Ni-CZS的析氢速率为5436.68 μmol·g-1·h-1,分别是原始CZS、Ni-CZS、NiO/CZS和NiO的3.0倍、2.2倍、1.9倍和200.5倍。Mott-Schottky和电子顺磁共振(EPR)分析揭示了一种有效的Z-scheme电荷转移途径。该研究为合理设计高效的z型异质结光催化剂提供了新的思路,揭示了自旋极化和界面工程在控制异质结载流子分离中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信