Data-driven security control for unknown nonlinear MASs with hybrid faults: A hierarchical control approach.

IF 6.5
Yuyang Zhao, Dawei Gong, Jiaoyuan Chen, Shijie Song, Minglei Zhu
{"title":"Data-driven security control for unknown nonlinear MASs with hybrid faults: A hierarchical control approach.","authors":"Yuyang Zhao, Dawei Gong, Jiaoyuan Chen, Shijie Song, Minglei Zhu","doi":"10.1016/j.isatra.2025.08.036","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a novel hierarchical data-driven consensus control strategy is developed for unknown nonlinear multi-agent systems (MASs) subject to hybrid faults. Unlike conventional model-free adaptive control (MFAC) methods that rely on consensus errors, the proposed approach introduces a hierarchical framework that structurally decouples the control process, thereby enhancing robustness and scalability. First, a fully distributed observer is employed to estimate the leader's dynamics based solely on locally available real-time input-output measurements, without relying on any prior knowledge of the system model. Then, a distributed MFAC-based controller is designed and embedded with an online actuator fault estimation mechanism to handle unknown faults in real time. This hierarchical design enables each agent to operate independently, reduces inter-agent interference, and streamlines the adjustment of controller parameters. Moreover, theoretical analysis ensures that all estimation and tracking errors remain uniformly bounded under hybrid fault conditions. Finally, simulation studies on two numerical MAS examples and multi-manipulator platforms demonstrate the effectiveness and practical applicability of the proposed method.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.08.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel hierarchical data-driven consensus control strategy is developed for unknown nonlinear multi-agent systems (MASs) subject to hybrid faults. Unlike conventional model-free adaptive control (MFAC) methods that rely on consensus errors, the proposed approach introduces a hierarchical framework that structurally decouples the control process, thereby enhancing robustness and scalability. First, a fully distributed observer is employed to estimate the leader's dynamics based solely on locally available real-time input-output measurements, without relying on any prior knowledge of the system model. Then, a distributed MFAC-based controller is designed and embedded with an online actuator fault estimation mechanism to handle unknown faults in real time. This hierarchical design enables each agent to operate independently, reduces inter-agent interference, and streamlines the adjustment of controller parameters. Moreover, theoretical analysis ensures that all estimation and tracking errors remain uniformly bounded under hybrid fault conditions. Finally, simulation studies on two numerical MAS examples and multi-manipulator platforms demonstrate the effectiveness and practical applicability of the proposed method.

未知非线性质量混合故障的数据驱动安全控制:一种层次控制方法。
针对存在混合故障的未知非线性多智能体系统,提出了一种新的分层数据驱动的一致性控制策略。与传统的依赖于共识误差的无模型自适应控制(MFAC)方法不同,该方法引入了一个分层框架,从结构上解耦了控制过程,从而增强了鲁棒性和可扩展性。首先,采用完全分布式的观测器,仅根据本地可用的实时输入输出测量来估计领导者的动态,而不依赖于系统模型的任何先验知识。然后,设计了一种基于mfacc的分布式控制器,并嵌入了执行器在线故障估计机制,实时处理未知故障。这种分层设计使每个代理独立运行,减少了代理之间的干扰,简化了控制器参数的调整。此外,理论分析保证了在混合故障条件下,所有估计和跟踪误差保持一致有界。最后,通过两个MAS数值算例和多机械臂平台的仿真研究,验证了所提方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信