Stability analysis of a non-cooperative system of reaction-diffusion equations modeling two sub-populations with mixed dispersal.

IF 2.3 4区 数学 Q2 BIOLOGY
C Eleh, M Khachatryan, M A Onyido, R B Salako
{"title":"Stability analysis of a non-cooperative system of reaction-diffusion equations modeling two sub-populations with mixed dispersal.","authors":"C Eleh, M Khachatryan, M A Onyido, R B Salako","doi":"10.1007/s00285-025-02281-2","DOIUrl":null,"url":null,"abstract":"<p><p>This study is concerned with the global stability of positive equilibrium (PE) solutions in a juvenile-adult structured diffusive model featuring a mixed dispersal mechanism. Under certain generic assumptions, we establish the uniqueness and global stability of the PE. Moreover, we show that these assumptions hold if either (i) the population disperses slowly, or (ii) the adults' reproduction rate is large. In particular, our findings demonstrate that a high adult reproduction rate always benefits species survival. Interestingly, with elevated juvenile maturity rates, the population can face extinction if the average death rate of adults surpasses their average reproduction rate. A key aspect of our analysis involves deriving the exact asymptotic limit of the principal spectrum point of some cooperative systems with mixed dispersals with respect to specific model parameters. In addition, we conducted numerical simulations to illustrate our theoretical results.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 4","pages":"39"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02281-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study is concerned with the global stability of positive equilibrium (PE) solutions in a juvenile-adult structured diffusive model featuring a mixed dispersal mechanism. Under certain generic assumptions, we establish the uniqueness and global stability of the PE. Moreover, we show that these assumptions hold if either (i) the population disperses slowly, or (ii) the adults' reproduction rate is large. In particular, our findings demonstrate that a high adult reproduction rate always benefits species survival. Interestingly, with elevated juvenile maturity rates, the population can face extinction if the average death rate of adults surpasses their average reproduction rate. A key aspect of our analysis involves deriving the exact asymptotic limit of the principal spectrum point of some cooperative systems with mixed dispersals with respect to specific model parameters. In addition, we conducted numerical simulations to illustrate our theoretical results.

一类非合作反应扩散方程组的稳定性分析。
本文研究了具有混合扩散机制的幼体-成体结构扩散模型中正平衡解的全局稳定性。在一定的一般假设下,我们建立了PE的唯一性和全局稳定性。此外,我们表明,如果(i)种群分散缓慢,或(ii)成年种群的繁殖率很大,这些假设都成立。特别是,我们的研究结果表明,高成虫繁殖率总是有利于物种的生存。有趣的是,随着幼鲸成熟率的提高,如果成年鲸的平均死亡率超过它们的平均繁殖率,这个种群可能面临灭绝。我们分析的一个关键方面涉及推导一些具有混合分散的合作系统相对于特定模型参数的主谱点的精确渐近极限。此外,我们还进行了数值模拟来说明我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信