Structure Changes in the Cervical Spinal Cord and Brain in Children With Complete Thoracolumbar Spinal Cord Injury.

IF 3.7
Qunya Qi, Ling Wang, Beining Yang, Yulong Jia, Yu Wang, Haotian Xin, Weimin Zheng, Xin Chen, Qian Chen, Fang Li, Jubao Du, Jie Lu, Nan Chen
{"title":"Structure Changes in the Cervical Spinal Cord and Brain in Children With Complete Thoracolumbar Spinal Cord Injury.","authors":"Qunya Qi, Ling Wang, Beining Yang, Yulong Jia, Yu Wang, Haotian Xin, Weimin Zheng, Xin Chen, Qian Chen, Fang Li, Jubao Du, Jie Lu, Nan Chen","doi":"10.1177/15459683251369490","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Investigating structural changes in the cervical spinal cord and brain in children with complete thoracolumbar spinal cord injury (TLSCI) and their correlation with clinical function may provide objective imaging indicators for functional evaluation.</p><p><strong>Methods: </strong>Twenty-one children with complete TLSCI and twenty-one typically developing (TD) children were enrolled in this study. All participants underwent whole-brain and upper cervical spinal cord sagittal 3D T1-weighted and whole-brain axial diffusion tensor imaging scans using a 3.0T MRI scanner. Utilizing the Spinal Cord Toolbox, cervical spinal cord morphological parameters were obtained. Brain structure changes were analyzed with voxel-based morphometry (VBM) and voxel-based analysis (VBA).</p><p><strong>Results: </strong>Compared to TD children, children with TLSCI showed significant reductions in the CSA (<i>P</i> = .011) and APW (<i>P</i> = .002) at the C2/3 level, as well as significant atrophy in the gray matter volume (GMV) of the left thalamus (<i>P</i> = .026), and bilateral paracentral lobule (PCL, <i>P</i> = .002). There was a significant positive correlation (r = 0.540, <i>P</i> = .017) between GMV of bilateral PCL and sensory scores. The VBA results showed a significant increase in fractional anisotropy values in the right posterior limb of the internal capsule, posterior thalamic radiation, and superior longitudinal fasciculus (SLF, <i>P</i> = .045), the mean diffusivity value of the right SLF was significantly decreased (<i>P</i> = .049) in children with TLSCI.</p><p><strong>Conclusions: </strong>In children with complete TLSCI, specific structural changes in the cervical spinal cord and brain were observed. A significant correlation between GMV of bilateral PCL and sensory scores may provide imaging biomarkers for assessing neurologic function and therapeutic efficacy (Ethics No: [2020] 003).</p>","PeriodicalId":94158,"journal":{"name":"Neurorehabilitation and neural repair","volume":" ","pages":"15459683251369490"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurorehabilitation and neural repair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15459683251369490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Investigating structural changes in the cervical spinal cord and brain in children with complete thoracolumbar spinal cord injury (TLSCI) and their correlation with clinical function may provide objective imaging indicators for functional evaluation.

Methods: Twenty-one children with complete TLSCI and twenty-one typically developing (TD) children were enrolled in this study. All participants underwent whole-brain and upper cervical spinal cord sagittal 3D T1-weighted and whole-brain axial diffusion tensor imaging scans using a 3.0T MRI scanner. Utilizing the Spinal Cord Toolbox, cervical spinal cord morphological parameters were obtained. Brain structure changes were analyzed with voxel-based morphometry (VBM) and voxel-based analysis (VBA).

Results: Compared to TD children, children with TLSCI showed significant reductions in the CSA (P = .011) and APW (P = .002) at the C2/3 level, as well as significant atrophy in the gray matter volume (GMV) of the left thalamus (P = .026), and bilateral paracentral lobule (PCL, P = .002). There was a significant positive correlation (r = 0.540, P = .017) between GMV of bilateral PCL and sensory scores. The VBA results showed a significant increase in fractional anisotropy values in the right posterior limb of the internal capsule, posterior thalamic radiation, and superior longitudinal fasciculus (SLF, P = .045), the mean diffusivity value of the right SLF was significantly decreased (P = .049) in children with TLSCI.

Conclusions: In children with complete TLSCI, specific structural changes in the cervical spinal cord and brain were observed. A significant correlation between GMV of bilateral PCL and sensory scores may provide imaging biomarkers for assessing neurologic function and therapeutic efficacy (Ethics No: [2020] 003).

完全性胸腰椎脊髓损伤儿童颈脊髓和脑结构的改变。
目的:探讨完全性胸腰椎脊髓损伤(TLSCI)患儿颈脊髓和脑结构变化及其与临床功能的相关性,为功能评价提供客观的影像学指标。方法:选取21例完全性TLSCI患儿和21例典型发育(TD)患儿作为研究对象。所有参与者均使用3.0T MRI扫描仪进行全脑和上颈脊髓矢状面三维t1加权和全脑轴向弥散张量成像扫描。利用脊髓工具箱,获得颈脊髓形态学参数。采用基于体素的形态测量(VBM)和基于体素的分析(VBA)分析脑结构变化。结果:与TD患儿相比,TLSCI患儿C2/3水平的CSA (P = 0.011)和APW (P = 0.002)显著降低,左丘脑灰质体积(GMV)显著萎缩(P = 0.011)。026)和双侧中央旁小叶(PCL, P = .002)。两者有显著正相关(r = 0.540, P =。017)双侧PCL GMV与感觉评分之间的关系。VBA结果显示右后肢内囊、丘脑后辐射和上纵束(SLF, P =)的分数各向异性值显著增加。045), TLSCI患儿右侧SLF平均扩散系数显著降低(P = 0.049)。结论:在完全性TLSCI患儿中,观察到颈脊髓和脑的特殊结构变化。双侧PCL GMV与感觉评分之间的显著相关性可能为评估神经功能和治疗效果提供影像学生物标志物(伦理号:[2020]003)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信