{"title":"Cardiac Development, Cellular Composition and Function: From Regulatory Mechanisms to Applications.","authors":"Huan-Yu Zhao, Jie-Bing Jiang, Shu-Na Wang, Chao-Yu Miao","doi":"10.3390/cells14171390","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiogenesis and heart cell composition and function constitute fundamental areas of cardiovascular medicine research, and exploring their underlying mechanisms is closely tied to the goals of precision medicine. This review comprehensively examines the composition and functions of the heart from embryonic organogenesis to maturity, and highlights the main breakthroughs of treatment strategies associated with these processes. By elaborating on the spatiotemporally specific signaling pathways and transcriptional networks that drive heart organogenesis and progenitor cell fate determination during the pivotal stages of cardiac development, and by systematically presenting the molecular biomarkers and functional characteristics of the principal cell types in mature heart, the latest advancements in related applications are summarized, with a particular emphasis on breakthroughs in gene/cell therapy, organoid development, and tissue engineering and regenerative medicine. This paper provides a theoretical foundation for precision interventions and regenerative medicine in cardiovascular disease using an axis that integrates cardiogenesis, cellular architecture, and therapeutic translation.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 17","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12428614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14171390","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiogenesis and heart cell composition and function constitute fundamental areas of cardiovascular medicine research, and exploring their underlying mechanisms is closely tied to the goals of precision medicine. This review comprehensively examines the composition and functions of the heart from embryonic organogenesis to maturity, and highlights the main breakthroughs of treatment strategies associated with these processes. By elaborating on the spatiotemporally specific signaling pathways and transcriptional networks that drive heart organogenesis and progenitor cell fate determination during the pivotal stages of cardiac development, and by systematically presenting the molecular biomarkers and functional characteristics of the principal cell types in mature heart, the latest advancements in related applications are summarized, with a particular emphasis on breakthroughs in gene/cell therapy, organoid development, and tissue engineering and regenerative medicine. This paper provides a theoretical foundation for precision interventions and regenerative medicine in cardiovascular disease using an axis that integrates cardiogenesis, cellular architecture, and therapeutic translation.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.