Bijorn Omar Balzamino, Mariagrazia Severino, Concetta Cafiero, Marco Coassin, Antonio Di Zazzo, Alessandra Micera
{"title":"The Zebrafish as a Model for Ocular Translational Research: From Retinal Repair to Regeneration.","authors":"Bijorn Omar Balzamino, Mariagrazia Severino, Concetta Cafiero, Marco Coassin, Antonio Di Zazzo, Alessandra Micera","doi":"10.3390/cells14171405","DOIUrl":null,"url":null,"abstract":"<p><p>In the last years, the zebrafish model has become a primary model system for vertebrate tissue regeneration, particularly for neurodegeneration and metabolic disease. Zebrafish (<i>Danio rerio</i>) are small freshwater teleosts valued for disease modelling, which are widely used in genetic laboratories, as a key model for studying neurodegenerative, metabolic, cardiac and dystrophic diseases, supporting the goal of identifying new therapeutic targets and approaches. Zebrafish can proliferate and produce/regenerate neurons. In response to retinal injury, zebrafish can regenerate multiple classes of retinal neurons and particularly, Müller glia-derived progenitor cells (MGPCs) can regenerate all types of neurons and restore visual function upon injury. The Jak/Stat-pathway of zebrafish retina represents one of the cell-signalling pathways involved in reprogramming Müller glia into MGPCs. In this era characterized by a revolution in experimental models and the future of omics, zebrafish might represent a suitable animal model for studying retinal degeneration and regeneration. In this context, the review is not meant to be entirely comprehensive of the zebrafish field, but it will highlight the usefulness of this model in discovering some mechanisms underlying retinal repair and regeneration.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 17","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12428511/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14171405","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the last years, the zebrafish model has become a primary model system for vertebrate tissue regeneration, particularly for neurodegeneration and metabolic disease. Zebrafish (Danio rerio) are small freshwater teleosts valued for disease modelling, which are widely used in genetic laboratories, as a key model for studying neurodegenerative, metabolic, cardiac and dystrophic diseases, supporting the goal of identifying new therapeutic targets and approaches. Zebrafish can proliferate and produce/regenerate neurons. In response to retinal injury, zebrafish can regenerate multiple classes of retinal neurons and particularly, Müller glia-derived progenitor cells (MGPCs) can regenerate all types of neurons and restore visual function upon injury. The Jak/Stat-pathway of zebrafish retina represents one of the cell-signalling pathways involved in reprogramming Müller glia into MGPCs. In this era characterized by a revolution in experimental models and the future of omics, zebrafish might represent a suitable animal model for studying retinal degeneration and regeneration. In this context, the review is not meant to be entirely comprehensive of the zebrafish field, but it will highlight the usefulness of this model in discovering some mechanisms underlying retinal repair and regeneration.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.