{"title":"Tertiary Lymphoid Structures in Human Melanoma: Molecular Mechanisms and Therapeutic Opportunities.","authors":"Gelare Ghajar-Rahimi, Ishika Patel, Nabiha Yusuf","doi":"10.3390/cells14171378","DOIUrl":null,"url":null,"abstract":"<p><p>Tertiary lymphoid structures (TLSs) are ectopic lymphoid aggregates often found in chronic inflammatory conditions, including cancer. These structures, which share many cellular and functional features with secondary lymphoid organs, can profoundly influence the tumor microenvironment by promoting local anti-tumor immune activation. TLSs have been observed in various cancers, including melanoma, and are associated with improved responses to immunotherapy and clinical outcomes. However, our understanding of the molecular mechanisms underlying TLS formation and function remains incomplete. This review summarizes the current findings on TLSs in human melanoma, drawing from multiple studies to provide an updated overview. We discuss the cellular composition, spatial distribution, and genetic signatures of TLSs at different stages of melanoma pathogenesis and in subtypes including acral, uveal, and desmoplastic melanoma. Additionally, we examine the influence of tumor mutational burden (TMB) and complement activation on TLS formation, as well as the role of TLSs in immune checkpoint inhibitor therapy. We also highlight the potential of TLSs as indicators for disease progression and treatment response, and review preclinical strategies aimed at inducing TLSs to improve therapeutic outcomes. This synthesis aims to support ongoing research into the role of TLSs in melanoma immunobiology.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 17","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12428040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14171378","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid aggregates often found in chronic inflammatory conditions, including cancer. These structures, which share many cellular and functional features with secondary lymphoid organs, can profoundly influence the tumor microenvironment by promoting local anti-tumor immune activation. TLSs have been observed in various cancers, including melanoma, and are associated with improved responses to immunotherapy and clinical outcomes. However, our understanding of the molecular mechanisms underlying TLS formation and function remains incomplete. This review summarizes the current findings on TLSs in human melanoma, drawing from multiple studies to provide an updated overview. We discuss the cellular composition, spatial distribution, and genetic signatures of TLSs at different stages of melanoma pathogenesis and in subtypes including acral, uveal, and desmoplastic melanoma. Additionally, we examine the influence of tumor mutational burden (TMB) and complement activation on TLS formation, as well as the role of TLSs in immune checkpoint inhibitor therapy. We also highlight the potential of TLSs as indicators for disease progression and treatment response, and review preclinical strategies aimed at inducing TLSs to improve therapeutic outcomes. This synthesis aims to support ongoing research into the role of TLSs in melanoma immunobiology.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.