The regulatory mechanisms controlling meiotic cross-over patterning in plants.

IF 4.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wanyue Xu, Qichao Lian, Meiling Li, Gregory P Copenhaver, Yingxiang Wang
{"title":"The regulatory mechanisms controlling meiotic cross-over patterning in plants.","authors":"Wanyue Xu, Qichao Lian, Meiling Li, Gregory P Copenhaver, Yingxiang Wang","doi":"10.1042/BST20253025","DOIUrl":null,"url":null,"abstract":"<p><p>Most sexually reproducing eukaryotes use a specialized cell division called meiosis to halve the complement of chromosomes in their gametes. During meiotic prophase I, homologous chromosomes (homologs) recombine by reciprocally exchanging DNA to form cross-overs (COs) that are required for accurate chromosome segregation. COs also reshuffle parental genomes to create genetic diversity among progeny. Molecular genetic studies have identified hundreds of genes involved in meiotic recombination, which have been well summarized in several reviews. Here, we highlight recent advances in understanding endogenous mechanisms that regulate the frequency and distribution of meiotic COs, also called CO patterning. Specifically, we focus on genome-wide regulation, epigenetic control, transcription regulation, and post-transcription processes. Additionally, we highlight open questions that still need further investigation in this field.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20253025","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Most sexually reproducing eukaryotes use a specialized cell division called meiosis to halve the complement of chromosomes in their gametes. During meiotic prophase I, homologous chromosomes (homologs) recombine by reciprocally exchanging DNA to form cross-overs (COs) that are required for accurate chromosome segregation. COs also reshuffle parental genomes to create genetic diversity among progeny. Molecular genetic studies have identified hundreds of genes involved in meiotic recombination, which have been well summarized in several reviews. Here, we highlight recent advances in understanding endogenous mechanisms that regulate the frequency and distribution of meiotic COs, also called CO patterning. Specifically, we focus on genome-wide regulation, epigenetic control, transcription regulation, and post-transcription processes. Additionally, we highlight open questions that still need further investigation in this field.

植物减数分裂交叉模式的调控机制。
大多数有性繁殖的真核生物使用一种称为减数分裂的特殊细胞分裂来将配子中的染色体补体减半。在减数分裂前期I,同源染色体(homologs)通过相互交换DNA重组,形成准确的染色体分离所需的交叉(COs)。COs还会重组亲代基因组,以在后代中创造遗传多样性。分子遗传学研究已经确定了数百个参与减数分裂重组的基因,这些基因在几篇综述中得到了很好的总结。在这里,我们重点介绍了在理解内源性机制方面的最新进展,这些机制调节了减数分裂CO的频率和分布,也称为CO模式。具体来说,我们关注全基因组调控、表观遗传控制、转录调控和转录后过程。此外,我们强调了该领域仍需进一步研究的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信