{"title":"RESPLE: Recursive Spline Estimation for LiDAR-Based Odometry","authors":"Ziyu Cao;William Talbot;Kailai Li","doi":"10.1109/LRA.2025.3604758","DOIUrl":null,"url":null,"abstract":"We present a novel recursive Bayesian estimation framework using B-splines for continuous-time 6-DoF dynamic motion estimation. The state vector consists of a recurrent set of position control points and orientation control point increments, enabling efficient estimation via a modified iterated extended Kalman filter without involving error-state formulations. The resulting recursive spline estimator (RESPLE) is further leveraged to develop a versatile suite of direct LiDAR-based odometry solutions, supporting the integration of one or multiple LiDARs and an IMU. We conduct extensive real-world evaluations using public datasets and our own experiments, covering diverse sensor setups, platforms, and environments. Compared to existing systems, RESPLE achieves comparable or superior estimation accuracy and robustness, while attaining real-time efficiency. Our results and analysis demonstrate RESPLE's strength in handling highly dynamic motions and complex scenes within a lightweight and flexible design, showing strong potential as a universal framework for multi-sensor motion estimation.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 10","pages":"10666-10673"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11146608/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel recursive Bayesian estimation framework using B-splines for continuous-time 6-DoF dynamic motion estimation. The state vector consists of a recurrent set of position control points and orientation control point increments, enabling efficient estimation via a modified iterated extended Kalman filter without involving error-state formulations. The resulting recursive spline estimator (RESPLE) is further leveraged to develop a versatile suite of direct LiDAR-based odometry solutions, supporting the integration of one or multiple LiDARs and an IMU. We conduct extensive real-world evaluations using public datasets and our own experiments, covering diverse sensor setups, platforms, and environments. Compared to existing systems, RESPLE achieves comparable or superior estimation accuracy and robustness, while attaining real-time efficiency. Our results and analysis demonstrate RESPLE's strength in handling highly dynamic motions and complex scenes within a lightweight and flexible design, showing strong potential as a universal framework for multi-sensor motion estimation.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.