A Broadband Preconditioner Based on Sparsified Nested Dissection Ordering Technique for the Vector-Scalar Potential Discrete Exterior Calculus Solver

IF 1.5 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Boyuan Zhang;Weng Cho Chew
{"title":"A Broadband Preconditioner Based on Sparsified Nested Dissection Ordering Technique for the Vector-Scalar Potential Discrete Exterior Calculus Solver","authors":"Boyuan Zhang;Weng Cho Chew","doi":"10.1109/JMMCT.2025.3563480","DOIUrl":null,"url":null,"abstract":"The discrete exterior calculus (DEC) <inline-formula><tex-math>$\\mathbf {A}$</tex-math></inline-formula>-<inline-formula><tex-math>$\\Phi$</tex-math></inline-formula> solver is a broadband stable solver in computational electromagnetics which can work from DC to optics. In order to solve practical problems, which are often multi-scale ones with large number of unknowns and condition number, a broadband preconditioner to the DEC <inline-formula><tex-math>$\\mathbf {A}$</tex-math></inline-formula>-<inline-formula><tex-math>$\\Phi$</tex-math></inline-formula> solver is proposed in this paper. The proposed preconditioner is based on sparsified nested dissection ordering (spa-NDO) technique. In this paper, introductions to the DEC <inline-formula><tex-math>$\\mathbf {A}$</tex-math></inline-formula>-<inline-formula><tex-math>$\\Phi$</tex-math></inline-formula> solver and NDO technique are provided, as well as detailed implementation flow of the proposed modified spa-NDO preconditioner. Through numerical examples, it reveals that the proposed preconditioned solver has <inline-formula><tex-math>$O(N \\log N)$</tex-math></inline-formula> computational complexity. The efficiency of the proposed preconditioner is almost independent of parameters such as frequency and conductivity in the problem, which indicates its broadband nature.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"235-245"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10989742/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The discrete exterior calculus (DEC) $\mathbf {A}$-$\Phi$ solver is a broadband stable solver in computational electromagnetics which can work from DC to optics. In order to solve practical problems, which are often multi-scale ones with large number of unknowns and condition number, a broadband preconditioner to the DEC $\mathbf {A}$-$\Phi$ solver is proposed in this paper. The proposed preconditioner is based on sparsified nested dissection ordering (spa-NDO) technique. In this paper, introductions to the DEC $\mathbf {A}$-$\Phi$ solver and NDO technique are provided, as well as detailed implementation flow of the proposed modified spa-NDO preconditioner. Through numerical examples, it reveals that the proposed preconditioned solver has $O(N \log N)$ computational complexity. The efficiency of the proposed preconditioner is almost independent of parameters such as frequency and conductivity in the problem, which indicates its broadband nature.
基于稀疏嵌套解剖排序技术的矢量-标量势离散外微积分求解器宽带预条件
离散外演算(DEC) $\mathbf {A}$ - $\Phi$求解器是计算电磁学中的一种宽带稳定求解器,可以从直流到光学工作。为了解决多尺度、多未知数和条件数的实际问题,本文提出了DEC求解器$\mathbf {A}$ - $\Phi$的宽带预调节器。提出的预条件是基于稀疏嵌套解剖排序(spa-NDO)技术。本文介绍了DEC $\mathbf {A}$ - $\Phi$求解器和NDO技术,并详细介绍了所提出的改进spa-NDO预调节器的实现流程。数值算例表明,该预条件求解器的计算复杂度为$O(N \log N)$。所提出的预调节器的效率几乎与问题中的频率和电导率等参数无关,这表明它具有宽带性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信