Minimum-Length Coverage Path Planning for Grid Environments With Approximation Guarantees

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Megnath Ramesh;Frank Imeson;Baris Fidan;Stephen L. Smith
{"title":"Minimum-Length Coverage Path Planning for Grid Environments With Approximation Guarantees","authors":"Megnath Ramesh;Frank Imeson;Baris Fidan;Stephen L. Smith","doi":"10.1109/LRA.2025.3604732","DOIUrl":null,"url":null,"abstract":"We focus on planning minimum-length robot paths to cover environments using the robot's sensor or coverage (e.g., cleaning) tool. Many algorithms use the following framework: (i) compute a grid decomposition of the environment, (ii) partition the grid to be covered by non-overlapping <italic>coverage lines</i> (straight-line paths), and (iii) compute a cost-minimizing tour of the coverage lines to get a coverage path. While this framework aims to minimize turns in the path, it does not yield guarantees on the resulting path length. In this letter, we show that this framework guarantees a coverage path of length <inline-formula><tex-math>$(1 + 1.5\\gamma)$</tex-math></inline-formula> times the optimal, where <inline-formula><tex-math>$\\gamma &gt; 1$</tex-math></inline-formula> is the approximation factor to solve the metric traveling salesman problem (metric-TSP). Following this, we propose the Minimum Length Coverage Approx (MLC-Approx) approach that modifies this framework to achieve an approximation factor of <inline-formula><tex-math>$(1.5 + \\epsilon)$</tex-math></inline-formula>, where <inline-formula><tex-math>$\\epsilon \\ll 1$</tex-math></inline-formula> depends on the number of coverage lines. Instead of computing a tour of the coverage lines, MLC-Approx merges minimum-length <italic>sub-tours</i> of coverage lines while minimizing the turns added by the merges. We also propose a lazy variation of MLC-Approx that achieves the same result with faster empirical runtime. We validate MLC-Approx in simulations using maps of real-world environments and compare against state-of-the-art CPP approaches.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 10","pages":"10674-10681"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11146610/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We focus on planning minimum-length robot paths to cover environments using the robot's sensor or coverage (e.g., cleaning) tool. Many algorithms use the following framework: (i) compute a grid decomposition of the environment, (ii) partition the grid to be covered by non-overlapping coverage lines (straight-line paths), and (iii) compute a cost-minimizing tour of the coverage lines to get a coverage path. While this framework aims to minimize turns in the path, it does not yield guarantees on the resulting path length. In this letter, we show that this framework guarantees a coverage path of length $(1 + 1.5\gamma)$ times the optimal, where $\gamma > 1$ is the approximation factor to solve the metric traveling salesman problem (metric-TSP). Following this, we propose the Minimum Length Coverage Approx (MLC-Approx) approach that modifies this framework to achieve an approximation factor of $(1.5 + \epsilon)$, where $\epsilon \ll 1$ depends on the number of coverage lines. Instead of computing a tour of the coverage lines, MLC-Approx merges minimum-length sub-tours of coverage lines while minimizing the turns added by the merges. We also propose a lazy variation of MLC-Approx that achieves the same result with faster empirical runtime. We validate MLC-Approx in simulations using maps of real-world environments and compare against state-of-the-art CPP approaches.
具有近似保证的网格环境的最小长度覆盖路径规划
我们专注于规划最小长度的机器人路径,以覆盖使用机器人的传感器或覆盖(例如,清洁)工具的环境。许多算法使用以下框架:(i)计算环境的网格分解,(ii)划分网格以由不重叠的覆盖线(直线路径)覆盖,以及(iii)计算覆盖线的成本最小化巡回以获得覆盖路径。虽然这个框架的目标是最小化路径上的转弯,但它不能保证最终的路径长度。在这封信中,我们证明了该框架保证覆盖路径的长度为$(1 + 1.5\gamma)$乘以最优,其中$\gamma > 1$是解决度量旅行商问题(metric- tsp)的近似因子。在此之后,我们提出了最小长度覆盖近似(mlc -近似)方法,该方法修改了该框架,以实现近似因子$(1.5 + \epsilon)$,其中$\epsilon \ll 1$取决于覆盖线的数量。MLC-Approx不是计算覆盖线路的巡回,而是合并覆盖线路的最小长度子巡回,同时最小化合并所增加的转弯。我们还提出了MLC-Approx的懒惰变体,以更快的经验运行时间达到相同的结果。我们使用真实世界环境的地图在模拟中验证mlc - approximate,并与最先进的CPP方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信