{"title":"Hardness transitions of star colouring and restricted star colouring","authors":"Shalu M.A. , Cyriac Antony","doi":"10.1016/j.dam.2025.08.056","DOIUrl":null,"url":null,"abstract":"<div><div>We study how the complexity of the graph colouring problems star colouring and restricted star colouring vary with the maximum degree of the graph. Restricted star colouring (in short, rs colouring) is a variant of star colouring, as the name implies. For <span><math><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, a <span><math><mi>k</mi></math></span>-colouring of a graph <span><math><mi>G</mi></math></span> is a function <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> for every edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>. A <span><math><mi>k</mi></math></span>-colouring of <span><math><mi>G</mi></math></span> is called a <span><math><mi>k</mi></math></span>-star colouring of <span><math><mi>G</mi></math></span> if there is no path <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>,</mo><mi>x</mi></mrow></math></span> in <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. A <span><math><mi>k</mi></math></span>-colouring of <span><math><mi>G</mi></math></span> is called a <span><math><mi>k</mi></math></span>-rs colouring of <span><math><mi>G</mi></math></span> if there is no path <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi></mrow></math></span> in <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>></mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span>. For <span><math><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, the problem <span><math><mi>k</mi></math></span>-<span>Star Colourability</span> takes a graph <span><math><mi>G</mi></math></span> as input and asks whether <span><math><mi>G</mi></math></span> admits a <span><math><mi>k</mi></math></span>-star colouring. The problem <span><math><mi>k</mi></math></span>-RS <span>Colourability</span> is defined similarly. Recently, Brause et al. (Electron. J. Comb., 2022) investigated the complexity of 3-star colouring with respect to the graph diameter. We study the complexity of <span><math><mi>k</mi></math></span>-star colouring and <span><math><mi>k</mi></math></span>-rs colouring with respect to the maximum degree for all <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. For <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, let us denote the least integer <span><math><mi>d</mi></math></span> such that <span><math><mi>k</mi></math></span>-<span>Star Colourability</span> (resp. <span><math><mi>k</mi></math></span>-RS <span>Colourability</span>) is NP-complete for graphs of maximum degree <span><math><mi>d</mi></math></span> by <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span> (resp. <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span>). We prove that for <span><math><mrow><mi>k</mi><mo>=</mo><mn>5</mn></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>7</mn></mrow></math></span>, <span><math><mi>k</mi></math></span>-<span>Star Colourability</span> is NP-complete for graphs of maximum degree <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> (i.e., <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>≤</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>). We also show that 4-RS <span>Colourability</span> is NP-complete for planar 3-regular graphs of girth 5 and <span><math><mi>k</mi></math></span>-RS <span>Colourability</span> is NP-complete for triangle-free graphs of maximum degree <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span> (i.e., <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>≤</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>). Using these results, we prove the following: (i) for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>d</mi><mo>≤</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>, <span><math><mi>k</mi></math></span>-<span>Star Colourability</span> is NP-complete for <span><math><mi>d</mi></math></span>-regular graphs if and only if <span><math><mrow><mi>d</mi><mo>≥</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></mrow></math></span>; and (ii) for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, <span><math><mi>k</mi></math></span>-RS <span>Colourability</span> is NP-complete for <span><math><mi>d</mi></math></span>-regular graphs if and only if <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>≤</mo><mi>d</mi><mo>≤</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>. It is not known whether result (ii) has a star colouring analogue.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 1-33"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005050","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study how the complexity of the graph colouring problems star colouring and restricted star colouring vary with the maximum degree of the graph. Restricted star colouring (in short, rs colouring) is a variant of star colouring, as the name implies. For , a -colouring of a graph is a function such that for every edge of . A -colouring of is called a -star colouring of if there is no path in with and . A -colouring of is called a -rs colouring of if there is no path in with . For , the problem -Star Colourability takes a graph as input and asks whether admits a -star colouring. The problem -RS Colourability is defined similarly. Recently, Brause et al. (Electron. J. Comb., 2022) investigated the complexity of 3-star colouring with respect to the graph diameter. We study the complexity of -star colouring and -rs colouring with respect to the maximum degree for all . For , let us denote the least integer such that -Star Colourability (resp. -RS Colourability) is NP-complete for graphs of maximum degree by (resp. ). We prove that for and , -Star Colourability is NP-complete for graphs of maximum degree (i.e., ). We also show that 4-RS Colourability is NP-complete for planar 3-regular graphs of girth 5 and -RS Colourability is NP-complete for triangle-free graphs of maximum degree for (i.e., ). Using these results, we prove the following: (i) for and , -Star Colourability is NP-complete for -regular graphs if and only if ; and (ii) for , -RS Colourability is NP-complete for -regular graphs if and only if . It is not known whether result (ii) has a star colouring analogue.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.