S. Grebovic , A. Aksamovic , B. Filipović – Grčić , S. Konjicija
{"title":"Investigation of lightning effects on solar power plants connected to transmission networks","authors":"S. Grebovic , A. Aksamovic , B. Filipović – Grčić , S. Konjicija","doi":"10.1016/j.epsr.2025.112217","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing integration of solar power plants into transmission grids has raised concerns about their vulnerability to disturbances, particularly lightning strokes. Solar energy, while offering significant environmental and economic benefits, faces challenges when connected to transmission lines that are prone to lightning discharges. This paper investigates the impact of lightning events on solar power plants, focusing on overvoltage effects. Lightning stroke simulations were conducted at various distances from the solar power plant along the transmission line, considering scenarios with and without surge arrester. Key lightning parameters such as peak current, front time, and tail time were varied to simulate different lightning strokes. The study also includes a Fourier transform analysis of the resulting overvoltages with and without a surge arrester, along with the Hilbert marginal spectrum of these overvoltages. The results provide insights into the effectiveness of surge arresters in mitigating lightning overvoltages and highlight the importance of proper protective measures for enhancing the reliability and safety of solar power plants connected to transmission networks.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"251 ","pages":"Article 112217"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779625008041","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing integration of solar power plants into transmission grids has raised concerns about their vulnerability to disturbances, particularly lightning strokes. Solar energy, while offering significant environmental and economic benefits, faces challenges when connected to transmission lines that are prone to lightning discharges. This paper investigates the impact of lightning events on solar power plants, focusing on overvoltage effects. Lightning stroke simulations were conducted at various distances from the solar power plant along the transmission line, considering scenarios with and without surge arrester. Key lightning parameters such as peak current, front time, and tail time were varied to simulate different lightning strokes. The study also includes a Fourier transform analysis of the resulting overvoltages with and without a surge arrester, along with the Hilbert marginal spectrum of these overvoltages. The results provide insights into the effectiveness of surge arresters in mitigating lightning overvoltages and highlight the importance of proper protective measures for enhancing the reliability and safety of solar power plants connected to transmission networks.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.