AOT-PixelNet: Lightweight and interpretable detection of forged images via adaptive orthogonal transform

IF 6.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dengtai Tan , Deyi Yang , Boao Tan , Chengyu Niu , Yang Yang , Shichao Li
{"title":"AOT-PixelNet: Lightweight and interpretable detection of forged images via adaptive orthogonal transform","authors":"Dengtai Tan ,&nbsp;Deyi Yang ,&nbsp;Boao Tan ,&nbsp;Chengyu Niu ,&nbsp;Yang Yang ,&nbsp;Shichao Li","doi":"10.1016/j.asoc.2025.113873","DOIUrl":null,"url":null,"abstract":"<div><div>Generative image detection faces persistent challenges in terms of generalization and interpretability, limiting its reliability in complex scenarios. To address these issues, we propose AOT-PixelNet, a lightweight and interpretable detection framework that integrates an Adaptive Orthogonal Transform (AOT) module with a streamlined 1 × 1 convolution-based PixelNet architecture. The AOT module leverages diverse orthogonal transforms, such as FFT and DCT, to extract informative frequency-domain features, thereby enhancing sensitivity to medium- and high-frequency artifacts. Meanwhile, PixelNet minimizes parameter count (only 0.98 million) while effectively capturing cross-channel inconsistencies and mitigating overfitting. Experimental evaluations on multiple unseen GAN and diffusion-based datasets demonstrate that AOT-PixelNet achieves superior performance with minimal computational cost. Specifically, it outperforms the NPR method by 0.6% and 11.76% on the ForenSynths and GenImage datasets, respectively, validating the framework’s robustness, effectiveness, and interpretability.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"185 ","pages":"Article 113873"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156849462501186X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Generative image detection faces persistent challenges in terms of generalization and interpretability, limiting its reliability in complex scenarios. To address these issues, we propose AOT-PixelNet, a lightweight and interpretable detection framework that integrates an Adaptive Orthogonal Transform (AOT) module with a streamlined 1 × 1 convolution-based PixelNet architecture. The AOT module leverages diverse orthogonal transforms, such as FFT and DCT, to extract informative frequency-domain features, thereby enhancing sensitivity to medium- and high-frequency artifacts. Meanwhile, PixelNet minimizes parameter count (only 0.98 million) while effectively capturing cross-channel inconsistencies and mitigating overfitting. Experimental evaluations on multiple unseen GAN and diffusion-based datasets demonstrate that AOT-PixelNet achieves superior performance with minimal computational cost. Specifically, it outperforms the NPR method by 0.6% and 11.76% on the ForenSynths and GenImage datasets, respectively, validating the framework’s robustness, effectiveness, and interpretability.

Abstract Image

AOT-PixelNet:基于自适应正交变换的轻量化和可解释的伪造图像检测
生成图像检测在泛化和可解释性方面面临着持续的挑战,限制了其在复杂场景下的可靠性。为了解决这些问题,我们提出了AOT-PixelNet,这是一个轻量级且可解释的检测框架,它将自适应正交变换(AOT)模块与流线型的基于1 × 1卷积的PixelNet架构集成在一起。AOT模块利用各种正交变换(如FFT和DCT)来提取信息丰富的频域特征,从而提高对中高频伪像的灵敏度。同时,PixelNet在有效捕获跨通道不一致和减轻过拟合的同时,最小化了参数计数(仅98万)。在多个未见过的GAN和基于扩散的数据集上的实验评估表明,AOT-PixelNet以最小的计算成本获得了卓越的性能。具体来说,它在ForenSynths和GenImage数据集上分别比NPR方法高出0.6%和11.76%,验证了框架的鲁棒性、有效性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信