The shared immunometabolic responses between dexamethasone-induced hepatobiliary syndrome and GCRV II-caused hemorrhagic disease reveal the pivotal role of autophagy and Hsp90 activity in metabolic and infectious diseases
{"title":"The shared immunometabolic responses between dexamethasone-induced hepatobiliary syndrome and GCRV II-caused hemorrhagic disease reveal the pivotal role of autophagy and Hsp90 activity in metabolic and infectious diseases","authors":"Siyao Zheng , Minhui Tao , Xiaoman Wu , Mingxian Chang","doi":"10.1016/j.watbs.2025.100400","DOIUrl":null,"url":null,"abstract":"<div><div>Contamination by dexamethasone (DEX) in aquatic environments is expected to rise significantly as it is used in the treatment of inflammation, allergies, and autoimmune disorders, especially COVID-19. However, the underlying effects and mechanisms of DEX in leading to metabolic or infectious diseases have remained largely unexplored in teleosts. Here, we used zebrafish <em>(Danio rerio</em>) as a model to study the effects of DEX exposure on metabolic and infectious diseases. We found that DEX-induced hepatobiliary syndrome significantly increased susceptibility to type II grass carp reovirus (GCRV-II), which causes severe hemorrhagic disease in aquaculture. Comparative transcriptomic analysis demonstrated the shared and disease-specific immunometabolic responses among zebrafish larvae with hepatobiliary syndrome and/or GCRV-II infection. Moreover, compared with those of wild-type zebrafish, zebrafish larvae with DEX-induced hepatobiliary syndrome and/or GCRV-II infection presented increased expression of inflammatory markers (<em>il1b</em>), coagulation markers (<em>fibrinogens</em> and <em>antithrombin</em> III), and genes involved in autophagy, including <em>hsp90aa</em>. <em>In vivo</em> inhibition of autophagy via 3-MA and Hsp90 activity via geldanamycin markedly suppressed hepatic lipid deposition and reactive oxygen species accumulation caused by hepatobiliary syndrome and/or GCRV-II infection, thus significantly reducing the severity of disease and level of mortality induced by DEX and/or GCRV-II infection. In conclusion, our findings establish that the inhibition of autophagy and Hsp90 activity are promising therapeutic targets for DEX-induced hepatobiliary syndrome, GCRV-II infection, and DEX-induced hepatobiliary syndrome complicated with GCRV-II infection.</div></div>","PeriodicalId":101277,"journal":{"name":"Water Biology and Security","volume":"4 4","pages":"Article 100400"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Biology and Security","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772735125000435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Contamination by dexamethasone (DEX) in aquatic environments is expected to rise significantly as it is used in the treatment of inflammation, allergies, and autoimmune disorders, especially COVID-19. However, the underlying effects and mechanisms of DEX in leading to metabolic or infectious diseases have remained largely unexplored in teleosts. Here, we used zebrafish (Danio rerio) as a model to study the effects of DEX exposure on metabolic and infectious diseases. We found that DEX-induced hepatobiliary syndrome significantly increased susceptibility to type II grass carp reovirus (GCRV-II), which causes severe hemorrhagic disease in aquaculture. Comparative transcriptomic analysis demonstrated the shared and disease-specific immunometabolic responses among zebrafish larvae with hepatobiliary syndrome and/or GCRV-II infection. Moreover, compared with those of wild-type zebrafish, zebrafish larvae with DEX-induced hepatobiliary syndrome and/or GCRV-II infection presented increased expression of inflammatory markers (il1b), coagulation markers (fibrinogens and antithrombin III), and genes involved in autophagy, including hsp90aa. In vivo inhibition of autophagy via 3-MA and Hsp90 activity via geldanamycin markedly suppressed hepatic lipid deposition and reactive oxygen species accumulation caused by hepatobiliary syndrome and/or GCRV-II infection, thus significantly reducing the severity of disease and level of mortality induced by DEX and/or GCRV-II infection. In conclusion, our findings establish that the inhibition of autophagy and Hsp90 activity are promising therapeutic targets for DEX-induced hepatobiliary syndrome, GCRV-II infection, and DEX-induced hepatobiliary syndrome complicated with GCRV-II infection.