AMTCC-PARAFAC: A convergent tensor framework for DOD–DOA–Doppler estimation in bistatic MIMO radar under impulsive noise

IF 2.2 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Li Li , Jiaxin Shi , Tianshuang Qiu , Mingyan He
{"title":"AMTCC-PARAFAC: A convergent tensor framework for DOD–DOA–Doppler estimation in bistatic MIMO radar under impulsive noise","authors":"Li Li ,&nbsp;Jiaxin Shi ,&nbsp;Tianshuang Qiu ,&nbsp;Mingyan He","doi":"10.1016/j.phycom.2025.102823","DOIUrl":null,"url":null,"abstract":"<div><div>To address the severe performance degradation of parameter estimation in impulsive noise environments, this paper proposes a novel tensor decomposition framework based on adaptive maximum total complex correntropy (AMTCC) for robust joint parameter estimation in bistatic MIMO radar systems. In the proposed method, for the first time, the AMTCC criterion to reconstruct the parallel factor (PARAFAC) cost function, marking the initial integration of complex correntropy theory with tensor decomposition. To optimize performance, we incorporate an adaptive kernel bandwidth selection mechanism that dynamically adjusts to impulsive noise environments, significantly enhancing parameter estimation accuracy. Then, we develop a novel PARAFAC algorithm based on the AMTCC and apply it to target parameter estimation in bistatic MIMO radar. The proposed algorithm eliminates FLOS methods’ need for prior noise knowledge while concurrently suppressing complex noise components and enabling automatic parameter pairing. Furthermore, we provide theoretical analyses: (1) analyzed complex correntropy’s impulsive noise suppression via nonlinear kernels, (2) proved the boundedness of the AMTCC cost function, (3) analyzed robustness advantages of AMTCC-PARAFAC over existing decompositions and its methodological positioning, (4) derived parameter Cramér–Rao bounds under <span><math><mi>α</mi></math></span>-stable noise, and (5) determined target identifiability limits through factor matrices’ Kruskal rank and dimension constraints. Simulation results demonstrate that the proposed algorithm effectively suppresses complex-domain impulsive noise while eliminating FLOS methods’ dependence on prior noise statistics, achieving superior parameter estimation accuracy and automatic pairing capability in <span><math><mi>α</mi></math></span>-stable noise environments.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"73 ","pages":"Article 102823"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490725002265","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To address the severe performance degradation of parameter estimation in impulsive noise environments, this paper proposes a novel tensor decomposition framework based on adaptive maximum total complex correntropy (AMTCC) for robust joint parameter estimation in bistatic MIMO radar systems. In the proposed method, for the first time, the AMTCC criterion to reconstruct the parallel factor (PARAFAC) cost function, marking the initial integration of complex correntropy theory with tensor decomposition. To optimize performance, we incorporate an adaptive kernel bandwidth selection mechanism that dynamically adjusts to impulsive noise environments, significantly enhancing parameter estimation accuracy. Then, we develop a novel PARAFAC algorithm based on the AMTCC and apply it to target parameter estimation in bistatic MIMO radar. The proposed algorithm eliminates FLOS methods’ need for prior noise knowledge while concurrently suppressing complex noise components and enabling automatic parameter pairing. Furthermore, we provide theoretical analyses: (1) analyzed complex correntropy’s impulsive noise suppression via nonlinear kernels, (2) proved the boundedness of the AMTCC cost function, (3) analyzed robustness advantages of AMTCC-PARAFAC over existing decompositions and its methodological positioning, (4) derived parameter Cramér–Rao bounds under α-stable noise, and (5) determined target identifiability limits through factor matrices’ Kruskal rank and dimension constraints. Simulation results demonstrate that the proposed algorithm effectively suppresses complex-domain impulsive noise while eliminating FLOS methods’ dependence on prior noise statistics, achieving superior parameter estimation accuracy and automatic pairing capability in α-stable noise environments.
AMTCC-PARAFAC:脉冲噪声条件下双基地MIMO雷达dod - doa -多普勒估计的收敛张量框架
针对脉冲噪声环境下参数估计性能严重退化的问题,提出了一种基于自适应最大总复熵(AMTCC)的张量分解框架,用于双基地MIMO雷达系统的鲁棒联合参数估计。在该方法中,首次采用AMTCC准则重构平行因子(PARAFAC)代价函数,标志着复熵理论与张量分解的首次结合。为了优化性能,我们采用了一种自适应核带宽选择机制,该机制可以动态调整脉冲噪声环境,显著提高参数估计精度。在此基础上,提出了一种新的基于AMTCC的PARAFAC算法,并将其应用于双基地MIMO雷达的目标参数估计。该算法消除了FLOS方法对先验噪声知识的需要,同时抑制了复杂的噪声成分,并实现了参数的自动配对。进一步,我们进行了理论分析:(1)通过非线性核分析了复杂相关熵对脉冲噪声的抑制作用;(2)证明了AMTCC代价函数的有界性;(3)分析了AMTCC- parafac相对于现有分解方法的鲁棒性优势及其方法定位;(4)推导了α-稳定噪声下参数cram - rao界;(5)通过因子矩阵的Kruskal秩和维数约束确定了目标可识别性极限。仿真结果表明,该算法有效地抑制了复域脉冲噪声,同时消除了FLOS方法对先验噪声统计量的依赖,在α-稳定噪声环境下具有较好的参数估计精度和自动配对能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Communication
Physical Communication ENGINEERING, ELECTRICAL & ELECTRONICTELECO-TELECOMMUNICATIONS
CiteScore
5.00
自引率
9.10%
发文量
212
审稿时长
55 days
期刊介绍: PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published. Topics of interest include but are not limited to: Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信