Mixed Nitsche extended finite element method for solving three-dimensional H(curl)-elliptic interface problems

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Nan Wang , Hanyu Chu , Jinru Chen , Ying Cai
{"title":"Mixed Nitsche extended finite element method for solving three-dimensional H(curl)-elliptic interface problems","authors":"Nan Wang ,&nbsp;Hanyu Chu ,&nbsp;Jinru Chen ,&nbsp;Ying Cai","doi":"10.1016/j.camwa.2025.08.031","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a Lagrange multiplier to relax the divergence-free constraint and propose a mixed Nitsche extended finite element method for solving three-dimensional H(curl)-elliptic interface problems. To ensure stability, we incorporate ghost penalty terms. By exploiting the commuting relationship of the de Rham complex, we derive an inf-sup stability result for the discrete bilinear form, which is uniform with respect to the mesh size, discontinuous parameters, and the interface position. Based on this, we establish the well-posedness of our method and demonstrate optimal error bounds in the discrete energy norm and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. Finally, numerical experiments are presented to illustrate the theoretical results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"199 ","pages":"Pages 22-44"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003645","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a Lagrange multiplier to relax the divergence-free constraint and propose a mixed Nitsche extended finite element method for solving three-dimensional H(curl)-elliptic interface problems. To ensure stability, we incorporate ghost penalty terms. By exploiting the commuting relationship of the de Rham complex, we derive an inf-sup stability result for the discrete bilinear form, which is uniform with respect to the mesh size, discontinuous parameters, and the interface position. Based on this, we establish the well-posedness of our method and demonstrate optimal error bounds in the discrete energy norm and L2 norm. Finally, numerical experiments are presented to illustrate the theoretical results.
求解三维H(旋度)-椭圆界面问题的混合Nitsche扩展有限元法
本文引入拉格朗日乘子来放宽无散度约束,并提出了求解三维H(旋度)-椭圆界面问题的混合Nitsche扩展有限元法。为了确保稳定性,我们加入了幽灵惩罚条款。通过利用de Rham复合体的交换关系,我们得到了离散双线性形式的稳定性结果,该结果在网格尺寸、不连续参数和界面位置方面是一致的。在此基础上,建立了该方法的适定性,并给出了离散能量范数和L2范数的最优误差界。最后通过数值实验对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信