Diving into recession: the collective knowledge of online users as an early warning system for recessionary expectations

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Kadhim Hayawi , Sakib Shahriar , Sujith Samuel Mathew , Efstathios Polyzos , Kaustuv Kanti Ganguli
{"title":"Diving into recession: the collective knowledge of online users as an early warning system for recessionary expectations","authors":"Kadhim Hayawi ,&nbsp;Sakib Shahriar ,&nbsp;Sujith Samuel Mathew ,&nbsp;Efstathios Polyzos ,&nbsp;Kaustuv Kanti Ganguli","doi":"10.1016/j.im.2025.104252","DOIUrl":null,"url":null,"abstract":"<div><div>As concerns about economic downturns manifest in online discussions, we investigate whether sentiment extracted from social media can serve as an early warning signal for recessionary pressures. Using a dataset of Twitter (X) posts related to economic prospects, we apply a range of sentiment analysis techniques, including a lexicon and rule-based method (VADER) and deep learning approaches (GPT and BERT). We assess the relationship between online sentiment and key recession indicators, such as the yield curve and GDPNow forecasts, using a combination of econometric and machine learning methods. In addition, we perform a comparative evaluation of sentiment classification techniques, incorporating both traditional models and deep learning architectures. Our results confirm that Twitter discussions precede changes in recessionary indicators and can thus provide forward-looking insights into economic sentiment. Furthermore, the comparative analysis reveals variations in sentiment detection across different methodologies, emphasizing the importance of selecting appropriate approaches in economic forecasting.</div></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"63 1","pages":"Article 104252"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720625001557","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As concerns about economic downturns manifest in online discussions, we investigate whether sentiment extracted from social media can serve as an early warning signal for recessionary pressures. Using a dataset of Twitter (X) posts related to economic prospects, we apply a range of sentiment analysis techniques, including a lexicon and rule-based method (VADER) and deep learning approaches (GPT and BERT). We assess the relationship between online sentiment and key recession indicators, such as the yield curve and GDPNow forecasts, using a combination of econometric and machine learning methods. In addition, we perform a comparative evaluation of sentiment classification techniques, incorporating both traditional models and deep learning architectures. Our results confirm that Twitter discussions precede changes in recessionary indicators and can thus provide forward-looking insights into economic sentiment. Furthermore, the comparative analysis reveals variations in sentiment detection across different methodologies, emphasizing the importance of selecting appropriate approaches in economic forecasting.
陷入衰退:在线用户的集体知识作为衰退预期的早期预警系统
由于对经济衰退的担忧在网上讨论中表现出来,我们调查了从社交媒体中提取的情绪是否可以作为经济衰退压力的早期预警信号。使用与经济前景相关的Twitter (X)帖子数据集,我们应用了一系列情感分析技术,包括基于词典和规则的方法(VADER)和深度学习方法(GPT和BERT)。我们使用计量经济学和机器学习方法的组合来评估在线情绪与关键衰退指标(如收益率曲线和GDPNow预测)之间的关系。此外,我们对情感分类技术进行了比较评估,结合了传统模型和深度学习架构。我们的研究结果证实,推特讨论先于衰退指标的变化,因此可以提供对经济情绪的前瞻性见解。此外,对比分析揭示了不同方法在情绪检测方面的差异,强调了在经济预测中选择合适方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信