Ultraslow diffusion revisited: Logarithmic scaling in single-term fractional diffusion models for anomalous transport of complex systems

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Jincheng Dong , Ning Du , Zhiwei Yang
{"title":"Ultraslow diffusion revisited: Logarithmic scaling in single-term fractional diffusion models for anomalous transport of complex systems","authors":"Jincheng Dong ,&nbsp;Ning Du ,&nbsp;Zhiwei Yang","doi":"10.1016/j.aml.2025.109749","DOIUrl":null,"url":null,"abstract":"<div><div>This study establishes rigorous ties between ultraslow diffusion dynamics and single-term Caputo–Hadamard time-fractional diffusion equations via mean square displacement (MSD) analysis. We derive the explicit logarithmic scaling law <span><math><mrow><mi>MSD</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>∼</mo><msup><mrow><mrow><mo>(</mo><mo>log</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> for constant-order Hadamard diffusion equations and verify this functional relationship through systematic numerical simulations. The revealed <span><math><msup><mrow><mrow><mo>(</mo><mo>log</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></math></span> scaling definitively departs from the classical <span><math><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> behavior characteristic of Caputo models, establishing a streamlined framework for modeling anomalous transport in mesoscopic complex systems.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109749"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089396592500299X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study establishes rigorous ties between ultraslow diffusion dynamics and single-term Caputo–Hadamard time-fractional diffusion equations via mean square displacement (MSD) analysis. We derive the explicit logarithmic scaling law MSD(t)(logt)α for constant-order Hadamard diffusion equations and verify this functional relationship through systematic numerical simulations. The revealed (logt)α scaling definitively departs from the classical tα behavior characteristic of Caputo models, establishing a streamlined framework for modeling anomalous transport in mesoscopic complex systems.
重新审视超低扩散:复杂系统异常输运的单项分数扩散模型的对数标度
本研究通过均方位移(MSD)分析建立了超低扩散动力学与单项Caputo-Hadamard时间分数扩散方程之间的严格联系。我们推导了常阶Hadamard扩散方程的显式对数标度律MSD(t) ~ (logt)α,并通过系统数值模拟验证了这种函数关系。揭示的(logt)α标度完全偏离了Caputo模式的经典tα行为特征,为模拟介观复杂系统中的异常输运建立了一个简化的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信