Monodromy of elliptic logarithms: Some topological methods and effective results

IF 0.7 3区 数学 Q3 MATHEMATICS
Francesco Tropeano
{"title":"Monodromy of elliptic logarithms: Some topological methods and effective results","authors":"Francesco Tropeano","doi":"10.1016/j.jnt.2025.08.008","DOIUrl":null,"url":null,"abstract":"<div><div>We study monodromy groups associated with elliptic schemes, examining the action induced by the fundamental group of the base via analytic continuation. We develop effective methods for investigating the relative monodromy group of elliptic logarithms and present explicit constructions of loops that simultaneously have trivial action on periods and non-trivial action on logarithms. We provide a new proof that the relative monodromy group of non-torsion sections has full rank. Our results include topological methods and effective techniques for analyzing the ramification locus of sections.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 49-87"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X2500229X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study monodromy groups associated with elliptic schemes, examining the action induced by the fundamental group of the base via analytic continuation. We develop effective methods for investigating the relative monodromy group of elliptic logarithms and present explicit constructions of loops that simultaneously have trivial action on periods and non-trivial action on logarithms. We provide a new proof that the relative monodromy group of non-torsion sections has full rank. Our results include topological methods and effective techniques for analyzing the ramification locus of sections.
椭圆对数的单一性:一些拓扑方法和有效结果
研究与椭圆型方案相关的单群,通过解析延拓检验了基群对椭圆型方案的作用。我们发展了研究椭圆对数的相对单调群的有效方法,并给出了同时对周期有平凡作用和对对数有非平凡作用的环的显式构造。给出了非扭转截面的相对单群是满秩的一个新的证明。我们的结果包括拓扑方法和有效的技术来分析分支轨迹的部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信