Development and application of high-purity Ti-O reference alloys for oxygen quantification using high resolution micro laser induced breakdown spectroscopy (HR-µLIBS)
Kevin Gautier , Antoine Casadebaigt , Emilie Fourcade , Enrica Epifano , Tripti Gaur , Aurélie Vande Put , Daniel Monceau
{"title":"Development and application of high-purity Ti-O reference alloys for oxygen quantification using high resolution micro laser induced breakdown spectroscopy (HR-µLIBS)","authors":"Kevin Gautier , Antoine Casadebaigt , Emilie Fourcade , Enrica Epifano , Tripti Gaur , Aurélie Vande Put , Daniel Monceau","doi":"10.1016/j.mtla.2025.102545","DOIUrl":null,"url":null,"abstract":"<div><div>The precise quantification of oxygen concentration in titanium is crucial for various high-performance applications. In this study, we developed reference samples to calibrate high-resolution micro laser-induced breakdown spectroscopy (HR-µLIBS) for oxygen analysis in titanium. Two fabrication methods were employed: (i) oxidation of titanium powder at high temperature in a controlled atmosphere with oxygen, followed by spark plasma sintering (SPS), and (ii) blending titanium powder with TiO<sub>2</sub> powder before sintering by SPS. Homogenized samples were then used to establish a calibration line correlating HR-µLIBS intensity with known oxygen concentrations. To evaluate the HR-µLIBS method, a titanium sample oxidized 500 h at 650 °C in Ar-20 %O<sub>2</sub> was analyzed using both HR-µLIBS and electron probe microanalysis (EPMA). The results demonstrate a strong agreement between the two methods, with HR-µLIBS offering superior speed and improved accuracy at low oxygen concentrations (< 3 at. %).</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"44 ","pages":"Article 102545"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925002133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The precise quantification of oxygen concentration in titanium is crucial for various high-performance applications. In this study, we developed reference samples to calibrate high-resolution micro laser-induced breakdown spectroscopy (HR-µLIBS) for oxygen analysis in titanium. Two fabrication methods were employed: (i) oxidation of titanium powder at high temperature in a controlled atmosphere with oxygen, followed by spark plasma sintering (SPS), and (ii) blending titanium powder with TiO2 powder before sintering by SPS. Homogenized samples were then used to establish a calibration line correlating HR-µLIBS intensity with known oxygen concentrations. To evaluate the HR-µLIBS method, a titanium sample oxidized 500 h at 650 °C in Ar-20 %O2 was analyzed using both HR-µLIBS and electron probe microanalysis (EPMA). The results demonstrate a strong agreement between the two methods, with HR-µLIBS offering superior speed and improved accuracy at low oxygen concentrations (< 3 at. %).
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).