Portable HS-SPME-GC-MS combined with machine learning for onsite detection of huanglongbing-infected navel orange leaves at high-altitude environments

IF 6.2
Jiafan Yang , Jianfeng Zhang , Wenqi Mo , Ximeng Liu , Xuan Liu , Yang Yang , Bin Hu
{"title":"Portable HS-SPME-GC-MS combined with machine learning for onsite detection of huanglongbing-infected navel orange leaves at high-altitude environments","authors":"Jiafan Yang ,&nbsp;Jianfeng Zhang ,&nbsp;Wenqi Mo ,&nbsp;Ximeng Liu ,&nbsp;Xuan Liu ,&nbsp;Yang Yang ,&nbsp;Bin Hu","doi":"10.1016/j.greeac.2025.100297","DOIUrl":null,"url":null,"abstract":"<div><div>Huanglongbing (HLB) remains one of the most destructive diseases threatening global citrus production, with its impact exacerbated in diverse altitudinal environments where environmental conditions can influence disease progression and diagnostic accuracy. In this study, we applied headspace solid-phase microextraction (HS-SPME) coupled with portable gas chromatography-mass spectrometry (GC–MS) to analyze volatile profiles of orange leaves from healthy and asymptomatic HLB-infected trees at different altitudes. A comprehensive machine learning (ML) framework, comprising random forest, logistic regression, XGBoost, support vector machine, and Ensemble classifier, was then used to achieve accurate discrimination between infection states and to identify altitude-dependent shifts in key metabolites such as limonene, 3-carene, and citronellal. The results revealed that the abundance of HLB-infected metabolites varied with altitude, indicating that environmental factors should be considered when selecting robust biomarkers for disease diagnosis. This portable analytical platform enables rapid and reliable detection of HLB under varying environmental conditions, providing a practical tool for precision agriculture and advancing the understanding of citrus metabolic responses to biotic (HLB) and abiotic (altitude) stresses.</div></div>","PeriodicalId":100594,"journal":{"name":"Green Analytical Chemistry","volume":"15 ","pages":"Article 100297"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277257742500093X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Huanglongbing (HLB) remains one of the most destructive diseases threatening global citrus production, with its impact exacerbated in diverse altitudinal environments where environmental conditions can influence disease progression and diagnostic accuracy. In this study, we applied headspace solid-phase microextraction (HS-SPME) coupled with portable gas chromatography-mass spectrometry (GC–MS) to analyze volatile profiles of orange leaves from healthy and asymptomatic HLB-infected trees at different altitudes. A comprehensive machine learning (ML) framework, comprising random forest, logistic regression, XGBoost, support vector machine, and Ensemble classifier, was then used to achieve accurate discrimination between infection states and to identify altitude-dependent shifts in key metabolites such as limonene, 3-carene, and citronellal. The results revealed that the abundance of HLB-infected metabolites varied with altitude, indicating that environmental factors should be considered when selecting robust biomarkers for disease diagnosis. This portable analytical platform enables rapid and reliable detection of HLB under varying environmental conditions, providing a practical tool for precision agriculture and advancing the understanding of citrus metabolic responses to biotic (HLB) and abiotic (altitude) stresses.
便携式HS-SPME-GC-MS结合机器学习现场检测高海拔环境下黄龙冰病脐橙叶
黄龙病(HLB)仍然是威胁全球柑橘生产的最具破坏性的病害之一,其影响在不同的海拔环境中加剧,环境条件可以影响疾病的进展和诊断准确性。本研究采用顶空固相微萃取技术(HS-SPME)结合便携式气相色谱-质谱联用技术(GC-MS)分析了不同海拔地区健康和无症状hhb感染树木的橙叶挥发物特征。然后使用一个综合的机器学习(ML)框架,包括随机森林、逻辑回归、XGBoost、支持向量机和集成分类器,以实现对感染状态的准确区分,并识别关键代谢物(如柠檬烯、3-烯和香茅醛)的海拔依赖变化。结果显示,乙型肝炎感染代谢物的丰度随海拔而变化,表明在选择可靠的疾病诊断生物标志物时应考虑环境因素。该便携式分析平台能够在不同环境条件下快速可靠地检测HLB,为精准农业提供实用工具,并促进对柑橘对生物(HLB)和非生物(海拔)胁迫的代谢反应的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信