Victor Spitzer , Céline Gicquel , Evgeny Gurevsky , François Sanson
{"title":"An approximate dynamic programming approach for multi-stage stochastic lot-sizing under a Decision–Hazard–Decision information structure","authors":"Victor Spitzer , Céline Gicquel , Evgeny Gurevsky , François Sanson","doi":"10.1016/j.dam.2025.08.051","DOIUrl":null,"url":null,"abstract":"<div><div>This work studies a combinatorial optimization problem encountered in industrial production planning: the single-item multi-resource lot-sizing problem with inventory bounds and lost sales. The demand to be satisfied by the production plan is subject to uncertainty and only probabilistically known. We consider a multi-stage decision process with a Decision–Hazard–Decision information structure in which decisions are made at each stage both before and after the uncertainty is revealed. Such a setting has not yet been studied for stochastic lot-sizing problems, and the resulting problem is modeled as a multi-stage stochastic integer program. We propose a solution approach based on an approximate stochastic dynamic programming algorithm. It relies on a decomposition of the problem into single-stage sub-problems and on the estimation at each stage of the expected future costs. Due to the Decision–Hazard–Decision information structure, each nested single-stage sub-problem is itself a two-stage stochastic integer program. We therefore introduce a Benders decomposition scheme to reduce the computational effort required to solve each nested sub-problem, and present a special-purpose polynomial-time algorithm to efficiently solve the single-scenario second-stage sub-problems involved in the Benders decomposition. The results of extensive simulation experiments carried out on large-size randomly generated instances are reported. They demonstrate the practical benefit, in terms of the actual production cost, of using the proposed approach as compared to a naive deterministic optimization approach based on the expected demand.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 355-378"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004913","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This work studies a combinatorial optimization problem encountered in industrial production planning: the single-item multi-resource lot-sizing problem with inventory bounds and lost sales. The demand to be satisfied by the production plan is subject to uncertainty and only probabilistically known. We consider a multi-stage decision process with a Decision–Hazard–Decision information structure in which decisions are made at each stage both before and after the uncertainty is revealed. Such a setting has not yet been studied for stochastic lot-sizing problems, and the resulting problem is modeled as a multi-stage stochastic integer program. We propose a solution approach based on an approximate stochastic dynamic programming algorithm. It relies on a decomposition of the problem into single-stage sub-problems and on the estimation at each stage of the expected future costs. Due to the Decision–Hazard–Decision information structure, each nested single-stage sub-problem is itself a two-stage stochastic integer program. We therefore introduce a Benders decomposition scheme to reduce the computational effort required to solve each nested sub-problem, and present a special-purpose polynomial-time algorithm to efficiently solve the single-scenario second-stage sub-problems involved in the Benders decomposition. The results of extensive simulation experiments carried out on large-size randomly generated instances are reported. They demonstrate the practical benefit, in terms of the actual production cost, of using the proposed approach as compared to a naive deterministic optimization approach based on the expected demand.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.