{"title":"Navigating large-pose challenge for high-fidelity face reenactment with video diffusion model","authors":"Mingtao Guo , Guanyu Xing , Yanci Zhang , Yanli Liu","doi":"10.1016/j.cag.2025.104423","DOIUrl":null,"url":null,"abstract":"<div><div>Face reenactment aims to generate realistic talking head videos by transferring motion from a driving video to a static source image while preserving the source identity. Although existing methods based on either implicit or explicit keypoints have shown promise, they struggle with large pose variations due to warping artifacts or the limitations of coarse facial landmarks. In this paper, we present the Face Reenactment Video Diffusion model (FRVD), a novel framework for high-fidelity face reenactment under large pose changes. Our method first employs a motion extractor to extract implicit facial keypoints from the source and driving images to represent fine-grained motion and to perform motion alignment through a warping module. To address the degradation introduced by warping, we introduce a Warping Feature Mapper (WFM) that maps the warped source image into the motion-aware latent space of a pretrained image-to-video (I2V) model. This latent space encodes rich priors of facial dynamics learned from large-scale video data, enabling effective warping correction and enhancing temporal coherence. Extensive experiments show that FRVD achieves superior performance over existing methods in terms of pose accuracy, identity preservation, and visual quality, especially in challenging scenarios with extreme pose variations.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"132 ","pages":"Article 104423"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009784932500264X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Face reenactment aims to generate realistic talking head videos by transferring motion from a driving video to a static source image while preserving the source identity. Although existing methods based on either implicit or explicit keypoints have shown promise, they struggle with large pose variations due to warping artifacts or the limitations of coarse facial landmarks. In this paper, we present the Face Reenactment Video Diffusion model (FRVD), a novel framework for high-fidelity face reenactment under large pose changes. Our method first employs a motion extractor to extract implicit facial keypoints from the source and driving images to represent fine-grained motion and to perform motion alignment through a warping module. To address the degradation introduced by warping, we introduce a Warping Feature Mapper (WFM) that maps the warped source image into the motion-aware latent space of a pretrained image-to-video (I2V) model. This latent space encodes rich priors of facial dynamics learned from large-scale video data, enabling effective warping correction and enhancing temporal coherence. Extensive experiments show that FRVD achieves superior performance over existing methods in terms of pose accuracy, identity preservation, and visual quality, especially in challenging scenarios with extreme pose variations.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.