LLM-infused multi-module transformer for emotion-aware sentiment analysis in few-shot scenarios

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kanwal Ahmed , Muhammad Imran Nadeem , Guanghui Wang , Fang Zuo , Zhijie Han
{"title":"LLM-infused multi-module transformer for emotion-aware sentiment analysis in few-shot scenarios","authors":"Kanwal Ahmed ,&nbsp;Muhammad Imran Nadeem ,&nbsp;Guanghui Wang ,&nbsp;Fang Zuo ,&nbsp;Zhijie Han","doi":"10.1016/j.inffus.2025.103668","DOIUrl":null,"url":null,"abstract":"<div><div>Sentiment analysis, particularly in few-shot scenarios and under constraints of limited data availability, presents significant challenges in accurately capturing the nuanced emotions conveyed in online reviews and public opinions. To address these limitations, this study introduces the Cognemotive Transformer (CogTrans), an advanced model that integrates emotion-cognitive reasoning with transformer-based generative approaches to enhance sentiment analysis. The proposed CogTrans framework consists of four key modules. The Quantity Augmentation Module utilizes large language models (LLMs) to generate synthetic data, thereby improving learning efficiency in few-shot settings. The Emotional Cognitive Analysis (ECA) Module constructs a sentence–emotion tree to facilitate a deeper understanding of sentiment contexts. The Transformer-based Semantic Representation (T-SR) Module employs a mask-transformer architecture to extract high-quality semantic features. Lastly, the Crisis Entity and Intent Prediction (CEIP) Module leverages natural language processing (NLP) techniques to identify critical entities in crisis-related texts and infer their underlying intentions using COMET-ATOMIC 2020. The integration of these components significantly enhances sentiment prediction, particularly in noisy and data-scarce environments. Experimental evaluations demonstrate that CogTrans outperforms existing models in both sentiment classification and interpretability, achieving state-of-the-art results across multiple benchmark datasets. Its ability to provide well-contextualized sentiment predictions while incorporating emotional context, cognitive reasoning, and crisis-relevant insights makes it a highly promising tool for practical applications in crisis management and review analysis.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"126 ","pages":"Article 103668"},"PeriodicalIF":15.5000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525007407","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment analysis, particularly in few-shot scenarios and under constraints of limited data availability, presents significant challenges in accurately capturing the nuanced emotions conveyed in online reviews and public opinions. To address these limitations, this study introduces the Cognemotive Transformer (CogTrans), an advanced model that integrates emotion-cognitive reasoning with transformer-based generative approaches to enhance sentiment analysis. The proposed CogTrans framework consists of four key modules. The Quantity Augmentation Module utilizes large language models (LLMs) to generate synthetic data, thereby improving learning efficiency in few-shot settings. The Emotional Cognitive Analysis (ECA) Module constructs a sentence–emotion tree to facilitate a deeper understanding of sentiment contexts. The Transformer-based Semantic Representation (T-SR) Module employs a mask-transformer architecture to extract high-quality semantic features. Lastly, the Crisis Entity and Intent Prediction (CEIP) Module leverages natural language processing (NLP) techniques to identify critical entities in crisis-related texts and infer their underlying intentions using COMET-ATOMIC 2020. The integration of these components significantly enhances sentiment prediction, particularly in noisy and data-scarce environments. Experimental evaluations demonstrate that CogTrans outperforms existing models in both sentiment classification and interpretability, achieving state-of-the-art results across multiple benchmark datasets. Its ability to provide well-contextualized sentiment predictions while incorporating emotional context, cognitive reasoning, and crisis-relevant insights makes it a highly promising tool for practical applications in crisis management and review analysis.
注入llm的多模块转换器,用于在少数镜头场景中进行情绪感知情绪分析
情感分析,特别是在少数镜头场景和有限的数据可用性约束下,在准确捕捉在线评论和公众意见中传达的细微情感方面提出了重大挑战。为了解决这些限制,本研究引入了认知动机转换器(CogTrans),这是一种先进的模型,将情感认知推理与基于转换器的生成方法集成在一起,以增强情感分析。提出的CogTrans框架由四个关键模块组成。数量增强模块利用大型语言模型(llm)生成合成数据,从而在少量镜头设置中提高学习效率。情绪认知分析(ECA)模块构建了一个句子-情绪树,以促进对情绪上下文的更深入理解。基于变压器的语义表示(T-SR)模块采用掩模变压器架构提取高质量的语义特征。最后,危机实体和意图预测(CEIP)模块利用自然语言处理(NLP)技术识别危机相关文本中的关键实体,并使用COMET-ATOMIC 2020推断其潜在意图。这些组件的集成显著增强了情绪预测,特别是在嘈杂和数据稀缺的环境中。实验评估表明,CogTrans在情感分类和可解释性方面都优于现有模型,在多个基准数据集上获得了最先进的结果。它能够提供情境化的情绪预测,同时结合情绪情境、认知推理和危机相关见解,这使它成为危机管理和评论分析中非常有前途的实际应用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信