Numerical solution of the variable-order time fractional advection reaction–diffusion equation via combination of a Newton’s polynomial and Cubic B-spline method

Q1 Mathematics
A.S.V. Ravi Kanth, Varela Pavankalyan
{"title":"Numerical solution of the variable-order time fractional advection reaction–diffusion equation via combination of a Newton’s polynomial and Cubic B-spline method","authors":"A.S.V. Ravi Kanth,&nbsp;Varela Pavankalyan","doi":"10.1016/j.padiff.2025.101289","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a numerical technique based on the cubic B-spline function for solving the variable-order time fractional advection reaction–diffusion equation in the sense of the Caputo derivative. Newton’s interpolation formulation has been employed to approximate the variable-order time-fractional derivative, while the cubic B-spline functions are utilized for spatial discretization. The proposed methodology demonstrated unconditionally stable and convergence of order <span><math><mrow><mo>(</mo><mi>Δ</mi><msup><mrow><mstyle><mi>r</mi></mstyle></mrow><mrow><mn>4</mn><mo>−</mo><mi>ϑ</mi><mrow><mo>(</mo><mi>ς</mi><mo>,</mo><mstyle><mi>r</mi></mstyle><mo>)</mo></mrow></mrow></msup><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span> through the Von Neumann analysis. Numerical investigations that confirm theoretical conclusions using data visualizations and tables to illustrate efficiency and accuracy. Furthermore, the comparative findings demonstrate that the novel discretization methodology outperforms the other techniques present in the literature in terms of accuracy.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"16 ","pages":"Article 101289"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a numerical technique based on the cubic B-spline function for solving the variable-order time fractional advection reaction–diffusion equation in the sense of the Caputo derivative. Newton’s interpolation formulation has been employed to approximate the variable-order time-fractional derivative, while the cubic B-spline functions are utilized for spatial discretization. The proposed methodology demonstrated unconditionally stable and convergence of order (Δr4ϑ(ς,r)+h2) through the Von Neumann analysis. Numerical investigations that confirm theoretical conclusions using data visualizations and tables to illustrate efficiency and accuracy. Furthermore, the comparative findings demonstrate that the novel discretization methodology outperforms the other techniques present in the literature in terms of accuracy.
结合牛顿多项式和三次b样条法求解变阶时间分数阶平流反应扩散方程
本文提出了一种基于三次b样条函数的Caputo导数意义下变阶时间分数阶平流反应扩散方程的数值求解方法。采用牛顿插值公式逼近变阶时间分数阶导数,采用三次b样条函数进行空间离散化。该方法通过Von Neumann分析证明了阶(Δr4− ̄(ς,r)+h2)的无条件稳定性和收敛性。使用数据可视化和表格来证实理论结论的数值调查,以说明效率和准确性。此外,比较结果表明,新的离散化方法优于其他技术目前在准确性方面的文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信