Power management for smart grids integrating renewable energy sources using Greylag goose optimization and anti-interference dynamic integral neural network
IF 5.7 3区 计算机科学Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
G.K. Jabash Samuel , P. Rajendran , Papana Venkata Prasad , Chinthalacheruvu Venkata Krishna Reddy
{"title":"Power management for smart grids integrating renewable energy sources using Greylag goose optimization and anti-interference dynamic integral neural network","authors":"G.K. Jabash Samuel , P. Rajendran , Papana Venkata Prasad , Chinthalacheruvu Venkata Krishna Reddy","doi":"10.1016/j.suscom.2025.101199","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a hybrid power management strategy for smart grids (SGs) that integrates renewable energy sources (RESs), such as battery energy storage systems (BESS), fuel cells (FCs), wind turbines (WT), and solar photovoltaic (PV). The GGO-AIDINN approach integrates Greylag Goose Optimization (GGO) and an Anti-Interference Dynamic Integral Neural Network (AIDINN) to address high emissions during low renewable energy (RE) availability and rising operational costs from advanced infrastructure. The GGO optimizes resource allocation and energy distribution, maximizing the use of available RE. Meanwhile, AIDINN predicts energy consumption patterns based on weather conditions, improving overall system performance. The proposed GGO-AIDINN model is implemented on MATLAB and evaluated against several existing methods, including Fuzzy Logic Control (FLC), Non-dominated Sorting Genetic Algorithm (NSGA-II), and others. Results show the hybrid method achieves significant improvements, with an operational cost of $1328 per MW, emissions of 13.76 kg per MW, and an efficiency of 98.7 %. These outcomes demonstrate that GGO-AIDINN outperforms traditional techniques, offering lower costs, reduced emissions, and enhanced system efficiency. This makes it a superior solution for sustainable power management in SGs incorporating RESs and BESS.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"48 ","pages":"Article 101199"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925001209","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a hybrid power management strategy for smart grids (SGs) that integrates renewable energy sources (RESs), such as battery energy storage systems (BESS), fuel cells (FCs), wind turbines (WT), and solar photovoltaic (PV). The GGO-AIDINN approach integrates Greylag Goose Optimization (GGO) and an Anti-Interference Dynamic Integral Neural Network (AIDINN) to address high emissions during low renewable energy (RE) availability and rising operational costs from advanced infrastructure. The GGO optimizes resource allocation and energy distribution, maximizing the use of available RE. Meanwhile, AIDINN predicts energy consumption patterns based on weather conditions, improving overall system performance. The proposed GGO-AIDINN model is implemented on MATLAB and evaluated against several existing methods, including Fuzzy Logic Control (FLC), Non-dominated Sorting Genetic Algorithm (NSGA-II), and others. Results show the hybrid method achieves significant improvements, with an operational cost of $1328 per MW, emissions of 13.76 kg per MW, and an efficiency of 98.7 %. These outcomes demonstrate that GGO-AIDINN outperforms traditional techniques, offering lower costs, reduced emissions, and enhanced system efficiency. This makes it a superior solution for sustainable power management in SGs incorporating RESs and BESS.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.