Quantity versus diversity: Influence of data on detecting EEG pathology with advanced ML models

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Martyna Poziomska , Marian Dovgialo , Przemysław Olbratowski , Paweł Niedbalski , Paweł Ogniewski , Joanna Zych , Jacek Rogala , Jarosław Żygierewicz
{"title":"Quantity versus diversity: Influence of data on detecting EEG pathology with advanced ML models","authors":"Martyna Poziomska ,&nbsp;Marian Dovgialo ,&nbsp;Przemysław Olbratowski ,&nbsp;Paweł Niedbalski ,&nbsp;Paweł Ogniewski ,&nbsp;Joanna Zych ,&nbsp;Jacek Rogala ,&nbsp;Jarosław Żygierewicz","doi":"10.1016/j.neunet.2025.108073","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of quantity and diversity of data on the performance of various machine-learning models for detecting general EEG pathology. We utilized an EEG dataset of 2993 recordings from Temple University Hospital and a dataset of 55,787 recordings from Elmiko Biosignals sp. z o.o. The latter contains data from 39 hospitals and a diverse patient set with varied conditions. Thus, we introduce the Elmiko dataset – the largest publicly available EEG corpus. Our findings show that small and consistent datasets enable a wide range of models to achieve high accuracy; however, variations in pathological conditions, recording protocols, and labeling standards lead to significant performance degradation. Nonetheless, increasing the number of available recordings improves predictive accuracy and may even compensate for data diversity, particularly in neural networks based on attention mechanism or transformer architecture. A meta-model that combined these networks with a gradient-boosting approach using handcrafted features demonstrated superior performance across varied datasets.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"193 ","pages":"Article 108073"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025009530","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of quantity and diversity of data on the performance of various machine-learning models for detecting general EEG pathology. We utilized an EEG dataset of 2993 recordings from Temple University Hospital and a dataset of 55,787 recordings from Elmiko Biosignals sp. z o.o. The latter contains data from 39 hospitals and a diverse patient set with varied conditions. Thus, we introduce the Elmiko dataset – the largest publicly available EEG corpus. Our findings show that small and consistent datasets enable a wide range of models to achieve high accuracy; however, variations in pathological conditions, recording protocols, and labeling standards lead to significant performance degradation. Nonetheless, increasing the number of available recordings improves predictive accuracy and may even compensate for data diversity, particularly in neural networks based on attention mechanism or transformer architecture. A meta-model that combined these networks with a gradient-boosting approach using handcrafted features demonstrated superior performance across varied datasets.
数量与多样性:数据对先进ML模型检测脑电图病理的影响
本研究探讨了数据的数量和多样性对检测一般脑电图病理的各种机器学习模型性能的影响。我们使用了来自天普大学医院的2993条记录的脑电图数据集和来自Elmiko Biosignals sp. z .o.的55,787条记录的数据集。后者包含来自39家医院和不同条件的不同患者组的数据。因此,我们引入了Elmiko数据集——最大的公开可用的脑电图语料库。我们的研究结果表明,小而一致的数据集可以使大范围的模型实现高精度;然而,病理条件、记录方案和标记标准的变化会导致显著的性能下降。尽管如此,增加可用记录的数量可以提高预测的准确性,甚至可以弥补数据的多样性,特别是在基于注意机制或转换架构的神经网络中。将这些网络与使用手工特征的梯度增强方法相结合的元模型在不同的数据集上表现出卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信