The chromatic number of {P2∪P3,banner}-free graphs

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jiali Long , Kaiyang Lan , Yan Wang
{"title":"The chromatic number of {P2∪P3,banner}-free graphs","authors":"Jiali Long ,&nbsp;Kaiyang Lan ,&nbsp;Yan Wang","doi":"10.1016/j.amc.2025.129707","DOIUrl":null,"url":null,"abstract":"<div><div>Borodin and Kostochka conjectured that for any graph <span><math><mi>G</mi></math></span> with maximum degree <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>9</mn></mrow></math></span>, the chromatic number satisfies <span><math><mrow><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>max</mi><mo>{</mo><mstyle><mi>Δ</mi></mstyle><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>,</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>}</mo></mrow></math></span>, where <span><math><mrow><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> denotes the clique number. While this conjecture remains open for general graphs, we prove its validity for the class of <span><math><mrow><mo>{</mo><msub><mi>P</mi><mn>2</mn></msub><mo>∪</mo><msub><mi>P</mi><mn>3</mn></msub><mo>,</mo><mtext>banner</mtext><mo>}</mo></mrow></math></span>-free graphs. Here, <span><math><mrow><msub><mi>P</mi><mn>2</mn></msub><mo>∪</mo><msub><mi>P</mi><mn>3</mn></msub></mrow></math></span> represents the disjoint union of a two-vertex path and a three-vertex path, and a <em>banner</em> refers to the graph formed by attaching a pendant vertex to a cycle with four vertices. Our result extends the recent work of Lan and Lin [1], establishing the conjecture for a strictly larger class of graphs.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129707"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004333","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Borodin and Kostochka conjectured that for any graph G with maximum degree Δ(G)9, the chromatic number satisfies χ(G)max{Δ(G)1,ω(G)}, where ω(G) denotes the clique number. While this conjecture remains open for general graphs, we prove its validity for the class of {P2P3,banner}-free graphs. Here, P2P3 represents the disjoint union of a two-vertex path and a three-vertex path, and a banner refers to the graph formed by attaching a pendant vertex to a cycle with four vertices. Our result extends the recent work of Lan and Lin [1], establishing the conjecture for a strictly larger class of graphs.
{P2∪P3,banner}无图的色数
Borodin和Kostochka推测,对于最大度Δ(G)≥9的任意图G,色数满足χ(G)≤max{Δ(G)−1,ω(G)},其中ω(G)表示团数。虽然这个猜想对于一般图仍然是开放的,但我们证明了它对于{P2∪P3,banner}这类无图的有效性。这里,P2∪P3表示两顶点路径和三顶点路径的不相交并,banner表示将一个垂顶点附加到一个有四个顶点的环上所形成的图。我们的结果扩展了Lan和Lin[1]最近的工作,建立了一个严格更大的图类的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信