Li Zhao , Liwu Li , Chunhui Cao , Qingyan Tang , Xianbin Wang
{"title":"Excess 40Ar in Chang'e-5 lunar soils suggests a possible origin from Earth wind","authors":"Li Zhao , Liwu Li , Chunhui Cao , Qingyan Tang , Xianbin Wang","doi":"10.1016/j.icarus.2025.116803","DOIUrl":null,"url":null,"abstract":"<div><div>The abundance of <sup>40</sup>Ar in lunar soils is significantly higher than the expected values from solar wind implantation and <sup>40</sup>K decay, a phenomenon known as <sup>40</sup>Ar excess. Traditionally, this excess is attributed to <sup>40</sup>Ar generated by the decay of <sup>40</sup>K within the Moon. This radiogenic <sup>40</sup>Ar degasses to the lunar surface, where it is ionized by solar radiation and subsequently captured by lunar soils. However, stepwise heating (200 °C–1300 °C) and degassing analyses of noble gas isotopes in Chang'e-5 lunar soils samples reveal the presence of two types of <sup>40</sup>Ar: one unrelated to <sup>36</sup>Ar, likely originating from in situ <sup>40</sup>K decay in the soils, and another correlated with <sup>36</sup>Ar, which may primarily derive from Earth wind. Earth wind, an ion flux formed by the escape of Earth's atmosphere, is thought to be injected onto the lunar surface under the regulation of Earth's magnetosphere. The study proposes that the excess <sup>40</sup>Ar in lunar soils may primarily stem from the continuous escape of Earth's atmosphere and be injected onto the lunar surface through both the inner and outer regions of Earth's magnetosphere, offering a new perspective for understanding volatile exchange between the Earth-Moon system.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"444 ","pages":"Article 116803"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525003513","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The abundance of 40Ar in lunar soils is significantly higher than the expected values from solar wind implantation and 40K decay, a phenomenon known as 40Ar excess. Traditionally, this excess is attributed to 40Ar generated by the decay of 40K within the Moon. This radiogenic 40Ar degasses to the lunar surface, where it is ionized by solar radiation and subsequently captured by lunar soils. However, stepwise heating (200 °C–1300 °C) and degassing analyses of noble gas isotopes in Chang'e-5 lunar soils samples reveal the presence of two types of 40Ar: one unrelated to 36Ar, likely originating from in situ 40K decay in the soils, and another correlated with 36Ar, which may primarily derive from Earth wind. Earth wind, an ion flux formed by the escape of Earth's atmosphere, is thought to be injected onto the lunar surface under the regulation of Earth's magnetosphere. The study proposes that the excess 40Ar in lunar soils may primarily stem from the continuous escape of Earth's atmosphere and be injected onto the lunar surface through both the inner and outer regions of Earth's magnetosphere, offering a new perspective for understanding volatile exchange between the Earth-Moon system.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.