Weakened ionization electrolyte with n-hexane additive enabling high activity of lithium-mediated nitrogen fixation

IF 14.9 1区 化学 Q1 Energy
Yunfei Huan , Yanzheng He , Zhenkang Wang , Haoqing Ji , Sisi Liu , Lifang Zhang , Xiaowei Shen , Jie Liu , Mengfan Wang , Tao Qian , Chenglin Yan
{"title":"Weakened ionization electrolyte with n-hexane additive enabling high activity of lithium-mediated nitrogen fixation","authors":"Yunfei Huan ,&nbsp;Yanzheng He ,&nbsp;Zhenkang Wang ,&nbsp;Haoqing Ji ,&nbsp;Sisi Liu ,&nbsp;Lifang Zhang ,&nbsp;Xiaowei Shen ,&nbsp;Jie Liu ,&nbsp;Mengfan Wang ,&nbsp;Tao Qian ,&nbsp;Chenglin Yan","doi":"10.1016/j.jechem.2025.08.037","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-mediated nitrogen reduction reaction (LMNRR) is a promising route for sustainable ammonia synthesis, but the generation of excessive solid electrolyte interphase (SEI) severely limits its efficiency. Here, we tackle this challenge by introducing <em>n</em>-hexane as an electrolyte additive to weaken LiClO<sub>4</sub> ionization, achieving minimized dissociation via squeezed solvation shells with compact ion pairs. Molecular dynamics simulations and experimental characterizations reveal that <em>n</em>-hexane enriches anion coordination around Li<sup>+</sup>, endowing the electrolyte with robust anti-reduction capability. This suppresses SEI overgrowth, reduces interfacial resistance, and accelerates N<sub>2</sub> diffusion. Consequently, a thinner, inorganic-rich SEI is formed, enabling high nitrogen flux and rapid active Li<sub>3</sub>N generation kinetics. Consequently, the proof-of-concept system achieves unprecedentedly high Faradaic efficiency of 53.8 %±8.2 % at 10 mA cm<sup>−2</sup> and NH<sub>3</sub> yield rate of 88.57±9.5 nmol s<sup>−1</sup> cm<sup>−2</sup> under ambient conditions, making a giant step further toward industrializing the electrochemical ammonia production.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"112 ","pages":"Pages 39-46"},"PeriodicalIF":14.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625006965","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-mediated nitrogen reduction reaction (LMNRR) is a promising route for sustainable ammonia synthesis, but the generation of excessive solid electrolyte interphase (SEI) severely limits its efficiency. Here, we tackle this challenge by introducing n-hexane as an electrolyte additive to weaken LiClO4 ionization, achieving minimized dissociation via squeezed solvation shells with compact ion pairs. Molecular dynamics simulations and experimental characterizations reveal that n-hexane enriches anion coordination around Li+, endowing the electrolyte with robust anti-reduction capability. This suppresses SEI overgrowth, reduces interfacial resistance, and accelerates N2 diffusion. Consequently, a thinner, inorganic-rich SEI is formed, enabling high nitrogen flux and rapid active Li3N generation kinetics. Consequently, the proof-of-concept system achieves unprecedentedly high Faradaic efficiency of 53.8 %±8.2 % at 10 mA cm−2 and NH3 yield rate of 88.57±9.5 nmol s−1 cm−2 under ambient conditions, making a giant step further toward industrializing the electrochemical ammonia production.

Abstract Image

加入正己烷的弱离子化电解质使锂介导的固氮具有高活性
锂介导的氮还原反应(LMNRR)是一种很有前途的可持续合成氨途径,但过量固体电解质间相(SEI)的产生严重限制了其效率。在这里,我们通过引入正己烷作为电解质添加剂来减弱LiClO4的电离,通过压缩的溶剂化壳和紧凑的离子对来实现最小化的解离,从而解决了这一挑战。分子动力学模拟和实验表征表明,正己烷富集了Li+周围的阴离子配位,使电解质具有强大的抗还原能力。这抑制了SEI过度生长,降低了界面阻力,加速了N2扩散。因此,形成了更薄、无机丰富的SEI,实现了高氮通量和快速活性Li3N生成动力学。因此,该概念验证系统在10 mA cm−2下达到了前所未有的高法拉第效率53.8%±8.2%,在环境条件下NH3的产率为88.57±9.5 nmol s−1 cm−2,向电化学制氨的工业化迈出了一大步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信