Yanhui Lu , Chengang Pei , Wenqiang Li , Qing Liu , Huan Pang , Xu Yu
{"title":"Tailoring active sites of cerium and nitrogen Co-doped rhenium disulfide for enhanced hydrogen evolution reaction","authors":"Yanhui Lu , Chengang Pei , Wenqiang Li , Qing Liu , Huan Pang , Xu Yu","doi":"10.1016/j.cclet.2025.111646","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of electrocatalysts with exceptional intrinsic activity and rich active sites has proven to be an effective strategy for remarkably enhancing the activity of the hydrogen evolution reaction (HER). Here, self-supporting cerium (Ce) and nitrogen (N)-doped rhenium disulfide nanosheets (denoted Ce,N-ReS<sub>2</sub>) grown on carbon fiber paper have been successfully synthesized. Ce and N doping modulates the lattice irregularity and adjusts the electronic configuration of rhenium disulfide, resulting in reduced hydrogen adsorption/desorption energy and enhanced catalytic stability. The optimized Ce,N-ReS<sub>2</sub> electrocatalysts exhibit superior catalytic activities of 44/130 and 79/139 mV at 10/100 mA/cm<sup>2</sup> for HER in alkaline and acidic media, respectively, along with robust durability. Both experimental results and density functional theory calculations indicate that the electronic structure of ReS<sub>2</sub> can be significantly altered by strategically incorporating Ce and N into the lattice, which in turn optimizes the Gibbs free energy of HER intermediates and accelerates the electrochemical kinetics. This study provides a potentially effective approach for the design and optimization of innovative electrocatalysts involving the regulation of anion and cation dual-doping and architectural engineering.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 12","pages":"Article 111646"},"PeriodicalIF":8.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841725008265","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The construction of electrocatalysts with exceptional intrinsic activity and rich active sites has proven to be an effective strategy for remarkably enhancing the activity of the hydrogen evolution reaction (HER). Here, self-supporting cerium (Ce) and nitrogen (N)-doped rhenium disulfide nanosheets (denoted Ce,N-ReS2) grown on carbon fiber paper have been successfully synthesized. Ce and N doping modulates the lattice irregularity and adjusts the electronic configuration of rhenium disulfide, resulting in reduced hydrogen adsorption/desorption energy and enhanced catalytic stability. The optimized Ce,N-ReS2 electrocatalysts exhibit superior catalytic activities of 44/130 and 79/139 mV at 10/100 mA/cm2 for HER in alkaline and acidic media, respectively, along with robust durability. Both experimental results and density functional theory calculations indicate that the electronic structure of ReS2 can be significantly altered by strategically incorporating Ce and N into the lattice, which in turn optimizes the Gibbs free energy of HER intermediates and accelerates the electrochemical kinetics. This study provides a potentially effective approach for the design and optimization of innovative electrocatalysts involving the regulation of anion and cation dual-doping and architectural engineering.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.