Microscale additively manufactured 3D metal-ceramic nanocomposites with improved strength and thermal stability

IF 11.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Nadia Rohbeck , Maria Watroba , Christopher Gunderson , Alexander Groetsch , Manish Jain , Janne-Petteri Niemelä , Aurelio Borzi , Ivo Utke , Xavier Maeder , Antonia Neels , Johann Michler , Jakob Schwiedrzik
{"title":"Microscale additively manufactured 3D metal-ceramic nanocomposites with improved strength and thermal stability","authors":"Nadia Rohbeck ,&nbsp;Maria Watroba ,&nbsp;Christopher Gunderson ,&nbsp;Alexander Groetsch ,&nbsp;Manish Jain ,&nbsp;Janne-Petteri Niemelä ,&nbsp;Aurelio Borzi ,&nbsp;Ivo Utke ,&nbsp;Xavier Maeder ,&nbsp;Antonia Neels ,&nbsp;Johann Michler ,&nbsp;Jakob Schwiedrzik","doi":"10.1016/j.addma.2025.104957","DOIUrl":null,"url":null,"abstract":"<div><div>Nanocomposites hold great promise for enhancing material properties beyond those of conventional materials. Here, we present a novel method integrating template-assisted electrodeposition of nanocrystalline gold (nc Au) and atomic layer deposition (ALD) of alumina to fabricate three-dimensional nanostructured metal matrix composites (MMCs) with enhanced mechanical strength, reduced density, and improved thermal stability. Microcompression experiments demonstrate that Au-alumina MMC achieves a yield strength of 838 MPa, outperforming pure nc Au (792 MPa) and Au hollow microlattices (250 MPa). The strength advantage increases at elevated temperatures: the MMC exhibits a 5 % improvement in yield strength at room temperature while retaining only 80 % of the weight, rising to a 42 % improvement at 100 °C. To enable design and optimization of such nanocomposites, we performed a systematic thermomechanical study on pure nc Au. Compression tests across a range of temperatures (23 °C to 100 °C) and strain rates (0.0004 s⁻¹ to 216 s⁻¹) revealed a transition in deformation behavior around 1 s⁻¹ . In the quasistatic regime, strain rate sensitivity increased from 0.025 to 0.063 with temperature, while remaining low (0.013) and temperature-independent at higher strain rates. The increase in activation volume (10 b³ to 24 b³) and activation energy (49–83 kJ/mol) with strain rate suggests a change in the rate-controlling mechanism. These results provide essential input for finite element modeling (FEM) of MMC, enabling identification of architectural parameters that can be tuned to optimize strength before fabrication. This work demonstrates the potential of microscale additive manufacturing and hybrid fabrication strategies to produce nanocomposites with tunable thermomechanical properties for demanding structural applications.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"111 ","pages":"Article 104957"},"PeriodicalIF":11.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425003215","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocomposites hold great promise for enhancing material properties beyond those of conventional materials. Here, we present a novel method integrating template-assisted electrodeposition of nanocrystalline gold (nc Au) and atomic layer deposition (ALD) of alumina to fabricate three-dimensional nanostructured metal matrix composites (MMCs) with enhanced mechanical strength, reduced density, and improved thermal stability. Microcompression experiments demonstrate that Au-alumina MMC achieves a yield strength of 838 MPa, outperforming pure nc Au (792 MPa) and Au hollow microlattices (250 MPa). The strength advantage increases at elevated temperatures: the MMC exhibits a 5 % improvement in yield strength at room temperature while retaining only 80 % of the weight, rising to a 42 % improvement at 100 °C. To enable design and optimization of such nanocomposites, we performed a systematic thermomechanical study on pure nc Au. Compression tests across a range of temperatures (23 °C to 100 °C) and strain rates (0.0004 s⁻¹ to 216 s⁻¹) revealed a transition in deformation behavior around 1 s⁻¹ . In the quasistatic regime, strain rate sensitivity increased from 0.025 to 0.063 with temperature, while remaining low (0.013) and temperature-independent at higher strain rates. The increase in activation volume (10 b³ to 24 b³) and activation energy (49–83 kJ/mol) with strain rate suggests a change in the rate-controlling mechanism. These results provide essential input for finite element modeling (FEM) of MMC, enabling identification of architectural parameters that can be tuned to optimize strength before fabrication. This work demonstrates the potential of microscale additive manufacturing and hybrid fabrication strategies to produce nanocomposites with tunable thermomechanical properties for demanding structural applications.
微尺度增材制造的三维金属陶瓷纳米复合材料具有提高的强度和热稳定性
纳米复合材料在提高材料性能方面具有很大的前景,可以超越传统材料。在这里,我们提出了一种结合模板辅助电沉积纳米晶金(nc Au)和氧化铝原子层沉积(ALD)的新方法,以制备三维纳米结构金属基复合材料(MMCs),该复合材料具有增强的机械强度,降低的密度和改善的热稳定性。微压缩实验表明,Au-氧化铝MMC的屈服强度为838 MPa,优于纯nc Au(792 MPa)和Au空心微晶格(250 MPa)。强度优势在高温下增加:MMC在室温下的屈服强度提高了5 %,同时只保留了80% %的重量,在100°C时提高到42 %。为了实现这种纳米复合材料的设计和优化,我们对纯nc Au进行了系统的热力学研究。在不同温度(23°C至100°C)和应变率(0.0004 s⁻¹至216 s⁻¹)范围内进行的压缩测试显示,在1 s⁻ 左右,变形行为发生了转变。在准静态状态下,应变率敏感性随温度升高从0.025增加到0.063,而在较高应变率下保持较低(0.013)且与温度无关。活化体积(10 ~ 24 b³)和活化能(49 ~ 83 kJ/mol)随应变速率的增加表明速率控制机制发生了变化。这些结果为MMC的有限元建模(FEM)提供了必要的输入,使结构参数的识别能够在制造前进行调整以优化强度。这项工作证明了微尺度增材制造和混合制造策略的潜力,可以生产出具有可调热机械性能的纳米复合材料,用于要求苛刻的结构应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信