{"title":"Bayesian spatial prediction of soil organic carbon stocks in eastern DRC using INLA-SPDE and environmental covariates","authors":"Alain Matazi Kangela , Bitaisha Nakishuka Shukuru , Serge Mugisho Mukotanyi , Gerard Imani , Yannick Mugumaarhama , Daniel Muhindo Iragi , Dieudonné Shamamba Bahati , Janvier Bigabwa Bashagaluke , Wivine Munyahali","doi":"10.1016/j.envc.2025.101303","DOIUrl":null,"url":null,"abstract":"<div><div>Soil organic carbon (SOC) plays a critical role in climate mitigation and agricultural sustainability, yet its spatial distribution in the eastern Democratic Republic of the Congo (DRC) remains poorly quantified. This study employs a Bayesian spatial modeling framework, Integrated Nested Laplace Approximation with Stochastic Partial Differential Equations (INLA-SPDE), to predict SOC stocks across Kalehe and Kabare territories, integrating 177 field observations with environmental covariates (soil properties, topography, and vegetation indices). The INLA-SPDE approach was chosen for its ability to handle sparse datasets effectively while providing robust uncertainty quantification, a key advantage for regions with limited observational data. Key drivers of SOC variability included soil pH, sand,clay content, bulk density, elevation, and vegetation indices (Normalized Difference Vegetation Index(NDVI), Soil-Adjusted Vegetation index (SAVI)). The INLA-SPDE model outperformed the global SoilGrids250m dataset, achieving a significantly higher correlation with observed data (<span><math><mrow><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>49</mn><mspace></mspace><mtext>vs</mtext><mspace></mspace><mn>0</mn><mo>.</mo><mn>045</mn><mo>,</mo><mi>p</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>001</mn></mrow></math></span>). Higher SOC stocks were predicted in forested southern regions (<span><math><mrow><mn>105</mn><mo>.</mo><mn>11</mn><mo>±</mo><mn>11</mn><mo>.</mo><mn>36</mn></mrow></math></span> MgC ha<sup>−1</sup>), while data-sparse northern areas exhibited greater uncertainty, with a posterior standard deviation of up to <span><math><mrow><mn>32</mn><mo>.</mo><mn>68</mn><mo>±</mo><mn>5</mn><mo>.</mo><mn>46</mn></mrow></math></span> MgC ha<sup>−1</sup>, (vs. the spatial field’s global standard deviation averaged to 12.74 MgC ha<sup>−1</sup> at the 97.5% quantile). Posterior distributions revealed significant spatial heterogeneity, linked to land use and observational density. Our results underscore the importance of localized SOC mapping for informed land management and climate resilience strategies in tropical Africa, demonstrating the INLA-SPDE framework’s superior predictive accuracy and interpretability in data-scarce environments.</div></div>","PeriodicalId":34794,"journal":{"name":"Environmental Challenges","volume":"21 ","pages":"Article 101303"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Challenges","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667010025002227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Soil organic carbon (SOC) plays a critical role in climate mitigation and agricultural sustainability, yet its spatial distribution in the eastern Democratic Republic of the Congo (DRC) remains poorly quantified. This study employs a Bayesian spatial modeling framework, Integrated Nested Laplace Approximation with Stochastic Partial Differential Equations (INLA-SPDE), to predict SOC stocks across Kalehe and Kabare territories, integrating 177 field observations with environmental covariates (soil properties, topography, and vegetation indices). The INLA-SPDE approach was chosen for its ability to handle sparse datasets effectively while providing robust uncertainty quantification, a key advantage for regions with limited observational data. Key drivers of SOC variability included soil pH, sand,clay content, bulk density, elevation, and vegetation indices (Normalized Difference Vegetation Index(NDVI), Soil-Adjusted Vegetation index (SAVI)). The INLA-SPDE model outperformed the global SoilGrids250m dataset, achieving a significantly higher correlation with observed data (). Higher SOC stocks were predicted in forested southern regions ( MgC ha−1), while data-sparse northern areas exhibited greater uncertainty, with a posterior standard deviation of up to MgC ha−1, (vs. the spatial field’s global standard deviation averaged to 12.74 MgC ha−1 at the 97.5% quantile). Posterior distributions revealed significant spatial heterogeneity, linked to land use and observational density. Our results underscore the importance of localized SOC mapping for informed land management and climate resilience strategies in tropical Africa, demonstrating the INLA-SPDE framework’s superior predictive accuracy and interpretability in data-scarce environments.
土壤有机碳(SOC)在减缓气候变化和农业可持续发展中发挥着关键作用,但其在刚果民主共和国东部的空间分布仍然缺乏量化。本研究采用贝叶斯空间建模框架——随机偏微分方程集成嵌套拉普拉斯近似(INLA-SPDE),将177个野外观测数据与环境协变量(土壤性质、地形和植被指数)相结合,预测Kalehe和Kabare地区的有机碳储量。选择INLA-SPDE方法是因为它能够有效地处理稀疏数据集,同时提供鲁棒的不确定性量化,这对于观测数据有限的地区来说是一个关键优势。土壤有机碳变异的主要驱动因素包括土壤pH、沙粒、粘土含量、容重、海拔和植被指数(归一化植被指数(NDVI)、土壤调整植被指数(SAVI))。INLA-SPDE模型优于全球SoilGrids250m数据集,与观测数据的相关性显著提高(r=0.49vs0.045,p<0.001)。南方森林地区碳储量较高(105.11±11.36 MgC ha - 1),而数据稀疏的北方地区则表现出更大的不确定性,后验标准差高达32.68±5.46 MgC ha - 1,而在97.5%分位数上,空间场的全球标准差平均为12.74 MgC ha - 1。后验分布显示出显著的空间异质性,与土地利用和观测密度有关。我们的研究结果强调了本地化有机碳制图对热带非洲土地管理和气候恢复策略的重要性,证明了INLA-SPDE框架在数据稀缺环境下具有卓越的预测准确性和可解释性。