Investigation of thermal transport enhancement and flow dynamics in biocompatible Au-Ag/blood casson hybrid nanofluid subject to magnetohydrodynamic force and surface slip on a vertical cone

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Vinothkumar B , Sreenivasulu P , Poornima T
{"title":"Investigation of thermal transport enhancement and flow dynamics in biocompatible Au-Ag/blood casson hybrid nanofluid subject to magnetohydrodynamic force and surface slip on a vertical cone","authors":"Vinothkumar B ,&nbsp;Sreenivasulu P ,&nbsp;Poornima T","doi":"10.1016/j.rineng.2025.107074","DOIUrl":null,"url":null,"abstract":"<div><div>Heart pumps, artificial joints, and other implants involve moving parts where friction and heat generation can occur. Nanofluids could potentially act as coolants or lubricants to maintain optimal temperatures and reduce wear in these systems. This study investigates the flow and thermal behaviour of a Casson fluid containing hybrid ternary nanoparticles (gold and silver dispersed in blood) over a vertical cone surface under the influence of magneto-hydrodynamics (MHD). The model incorporates complex physical effects including thermal and momentum slip, variable heat sources and sinks, and buoyancy-induced thermal convection. The governing boundary layer equations are transformed using similarity variables and solved numerically. Streamline patterns and Nusselt number variations are analysed for varying magnetic parameter M, nanoparticle volume fraction β, and slip conditions. The results reveal that the inclusion of hybrid nanoparticles significantly enhances heat transfer, while magnetic effects tend to suppress fluid motion due to Lorentz force. Additionally, the presence of non-uniform heat generation and slip conditions alters the thermal boundary layer characteristics, making this model highly applicable to biomedical and industrial heat management systems. Certain diagnostic procedures or devices might involve fluid flow and temperature control, where understanding thermal behaviour of blood with nanoparticles could be important.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107074"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025031299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heart pumps, artificial joints, and other implants involve moving parts where friction and heat generation can occur. Nanofluids could potentially act as coolants or lubricants to maintain optimal temperatures and reduce wear in these systems. This study investigates the flow and thermal behaviour of a Casson fluid containing hybrid ternary nanoparticles (gold and silver dispersed in blood) over a vertical cone surface under the influence of magneto-hydrodynamics (MHD). The model incorporates complex physical effects including thermal and momentum slip, variable heat sources and sinks, and buoyancy-induced thermal convection. The governing boundary layer equations are transformed using similarity variables and solved numerically. Streamline patterns and Nusselt number variations are analysed for varying magnetic parameter M, nanoparticle volume fraction β, and slip conditions. The results reveal that the inclusion of hybrid nanoparticles significantly enhances heat transfer, while magnetic effects tend to suppress fluid motion due to Lorentz force. Additionally, the presence of non-uniform heat generation and slip conditions alters the thermal boundary layer characteristics, making this model highly applicable to biomedical and industrial heat management systems. Certain diagnostic procedures or devices might involve fluid flow and temperature control, where understanding thermal behaviour of blood with nanoparticles could be important.
在磁流体动力和垂直锥体表面滑移作用下生物相容性Au-Ag/blood casson混合纳米流体的热传递增强和流动动力学研究
心脏泵、人工关节和其他植入物都涉及可能发生摩擦和发热的活动部件。纳米流体可以作为冷却剂或润滑剂,在这些系统中保持最佳温度,减少磨损。本研究研究了在磁流体力学(MHD)的影响下,一种含有混合三元纳米颗粒(金和银分散在血液中)的卡森流体在垂直锥体表面上的流动和热行为。该模型考虑了复杂的物理效应,包括热量和动量滑移、可变热源和热源以及浮力诱导的热对流。利用相似变量对控制边界层方程进行变换,并进行数值求解。在不同的磁性参数M、纳米颗粒体积分数β和滑移条件下,分析了流线模式和努塞尔数变化。结果表明,杂化纳米颗粒的加入显著增强了传热,而由于洛伦兹力的作用,磁效应往往会抑制流体的运动。此外,非均匀产热和滑移条件的存在改变了热边界层特征,使该模型高度适用于生物医学和工业热管理系统。某些诊断程序或设备可能涉及流体流动和温度控制,其中用纳米颗粒了解血液的热行为可能很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信