A structure-preserving nonstaggered central scheme for shallow water equations with wet–dry fronts and Coriolis force on triangles

IF 2.9 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Jian Dong , Xu Qian , Huizan Wang
{"title":"A structure-preserving nonstaggered central scheme for shallow water equations with wet–dry fronts and Coriolis force on triangles","authors":"Jian Dong ,&nbsp;Xu Qian ,&nbsp;Huizan Wang","doi":"10.1016/j.ocemod.2025.102626","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a structure-preserving nonstaggered central scheme for the two-dimensional shallow water equations with wet–dry fronts and Coriolis force on triangular meshes. A key innovation of our approach is the development of a novel discretization method for source terms that exploits the geometric properties of the mesh within staggered cells. This method effectively overcomes the limitations of existing central schemes, which often exhibit a lack of well-balanced property in configurations that involve wet–dry fronts. In particular, the defined numerical fluxes not only utilize information from the central points but also from the vertex points. We rigorously show that the proposed numerical scheme maintains both positivity-preserving and well-balanced properties, essential attributes that ensure the physical validity and stability of the simulations. To verify our theoretical results, we conduct comprehensive numerical experiments that encompass a variety of scenarios. The results highlight the method’s exceptional performance in accurately modeling complex fluid dynamics associated with wet–dry fronts and Coriolis force.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"199 ","pages":"Article 102626"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500325001295","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a structure-preserving nonstaggered central scheme for the two-dimensional shallow water equations with wet–dry fronts and Coriolis force on triangular meshes. A key innovation of our approach is the development of a novel discretization method for source terms that exploits the geometric properties of the mesh within staggered cells. This method effectively overcomes the limitations of existing central schemes, which often exhibit a lack of well-balanced property in configurations that involve wet–dry fronts. In particular, the defined numerical fluxes not only utilize information from the central points but also from the vertex points. We rigorously show that the proposed numerical scheme maintains both positivity-preserving and well-balanced properties, essential attributes that ensure the physical validity and stability of the simulations. To verify our theoretical results, we conduct comprehensive numerical experiments that encompass a variety of scenarios. The results highlight the method’s exceptional performance in accurately modeling complex fluid dynamics associated with wet–dry fronts and Coriolis force.
具有干湿锋面和三角形科里奥利力的浅水方程的保结构非交错中心格式
本文介绍了一种保留结构的非交错中心方案,用于三角网格上具有干湿锋面和科里奥利力的二维浅水方程。我们方法的一个关键创新是开发了一种新的源项离散化方法,该方法利用了交错单元内网格的几何特性。这种方法有效地克服了现有中央方案的局限性,这些方案在涉及干湿锋面的配置中往往表现出缺乏良好的平衡特性。特别是,所定义的数值通量不仅利用了中心点的信息,而且利用了顶点点的信息。我们严格地证明了所提出的数值格式既保持正性又保持平衡性,这是确保模拟的物理有效性和稳定性的基本属性。为了验证我们的理论结果,我们进行了包含各种场景的综合数值实验。结果表明,该方法在精确模拟与干湿锋面和科里奥利力相关的复杂流体动力学方面具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信