{"title":"A structure-preserving nonstaggered central scheme for shallow water equations with wet–dry fronts and Coriolis force on triangles","authors":"Jian Dong , Xu Qian , Huizan Wang","doi":"10.1016/j.ocemod.2025.102626","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a structure-preserving nonstaggered central scheme for the two-dimensional shallow water equations with wet–dry fronts and Coriolis force on triangular meshes. A key innovation of our approach is the development of a novel discretization method for source terms that exploits the geometric properties of the mesh within staggered cells. This method effectively overcomes the limitations of existing central schemes, which often exhibit a lack of well-balanced property in configurations that involve wet–dry fronts. In particular, the defined numerical fluxes not only utilize information from the central points but also from the vertex points. We rigorously show that the proposed numerical scheme maintains both positivity-preserving and well-balanced properties, essential attributes that ensure the physical validity and stability of the simulations. To verify our theoretical results, we conduct comprehensive numerical experiments that encompass a variety of scenarios. The results highlight the method’s exceptional performance in accurately modeling complex fluid dynamics associated with wet–dry fronts and Coriolis force.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"199 ","pages":"Article 102626"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500325001295","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a structure-preserving nonstaggered central scheme for the two-dimensional shallow water equations with wet–dry fronts and Coriolis force on triangular meshes. A key innovation of our approach is the development of a novel discretization method for source terms that exploits the geometric properties of the mesh within staggered cells. This method effectively overcomes the limitations of existing central schemes, which often exhibit a lack of well-balanced property in configurations that involve wet–dry fronts. In particular, the defined numerical fluxes not only utilize information from the central points but also from the vertex points. We rigorously show that the proposed numerical scheme maintains both positivity-preserving and well-balanced properties, essential attributes that ensure the physical validity and stability of the simulations. To verify our theoretical results, we conduct comprehensive numerical experiments that encompass a variety of scenarios. The results highlight the method’s exceptional performance in accurately modeling complex fluid dynamics associated with wet–dry fronts and Coriolis force.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.