A novel hybrid CNN-CBAM-GRU method for intrusion detection in modern networks

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
S. M. Hosseini, A. Ebrahimi, M. R. Mosavi, H. Sh. Shahhoseini
{"title":"A novel hybrid CNN-CBAM-GRU method for intrusion detection in modern networks","authors":"S. M. Hosseini,&nbsp;A. Ebrahimi,&nbsp;M. R. Mosavi,&nbsp;H. Sh. Shahhoseini","doi":"10.1016/j.rineng.2025.107103","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid expansion and growing reliance on interconnected systems across industries, ensuring robust network security has become an increasingly critical and urgent concern. The complexity of modern networks, coupled with the evolving nature of cyber threats, underscores the importance of safeguarding sensitive data and infrastructure. Intrusion Detection Systems (IDS) play a pivotal and indispensable role in this context, serving as essential tools for detecting, analyzing, and mitigating a wide variety of sophisticated cyber threats. These systems are designed to monitor, identify, and respond to malicious activities within increasingly dynamic, high-speed, and complex network environments, ensuring operational resilience and security. Four models for intrusion detection in network environments are presented in this study, utilizing deep learning architectures: Convolutional Block Attention Modules (CBAM) with Convolutional Neural Network (CNN), Gated Recurrent Units (GRU), a sequential combination of CNN-CBAM and GRU, and a parallel combination of CNN-CBAM and GRU. The system is evaluated on UNSW-NB15 and NSL-KDD datasets for binary and multi-class classification tasks and are evaluated in comparison to other studies in the literature. Results indicate the parallel CNN-CBAM-GRU configuration achieves superior performance, with multi-class classification accuracies of 96.30 % and 99.56 % on UNSW-NB15 and NSL-KDD, respectively. The sequential CNN-CBAM-GRU model also delivers competitive results, achieving 96.19 % on UNSW-NB15 and 99.54 % on NSL-KDD. These findings highlight the effectiveness of the proposed IDS in modern network security environments.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107103"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025031585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid expansion and growing reliance on interconnected systems across industries, ensuring robust network security has become an increasingly critical and urgent concern. The complexity of modern networks, coupled with the evolving nature of cyber threats, underscores the importance of safeguarding sensitive data and infrastructure. Intrusion Detection Systems (IDS) play a pivotal and indispensable role in this context, serving as essential tools for detecting, analyzing, and mitigating a wide variety of sophisticated cyber threats. These systems are designed to monitor, identify, and respond to malicious activities within increasingly dynamic, high-speed, and complex network environments, ensuring operational resilience and security. Four models for intrusion detection in network environments are presented in this study, utilizing deep learning architectures: Convolutional Block Attention Modules (CBAM) with Convolutional Neural Network (CNN), Gated Recurrent Units (GRU), a sequential combination of CNN-CBAM and GRU, and a parallel combination of CNN-CBAM and GRU. The system is evaluated on UNSW-NB15 and NSL-KDD datasets for binary and multi-class classification tasks and are evaluated in comparison to other studies in the literature. Results indicate the parallel CNN-CBAM-GRU configuration achieves superior performance, with multi-class classification accuracies of 96.30 % and 99.56 % on UNSW-NB15 and NSL-KDD, respectively. The sequential CNN-CBAM-GRU model also delivers competitive results, achieving 96.19 % on UNSW-NB15 and 99.54 % on NSL-KDD. These findings highlight the effectiveness of the proposed IDS in modern network security environments.
一种新的用于现代网络入侵检测的CNN-CBAM-GRU混合方法
随着行业的快速扩张和对互联系统的日益依赖,确保强大的网络安全已成为一个日益重要和紧迫的问题。现代网络的复杂性,再加上网络威胁的不断演变,凸显了保护敏感数据和基础设施的重要性。入侵检测系统(IDS)在这方面发挥着关键和不可或缺的作用,是检测、分析和减轻各种复杂网络威胁的基本工具。这些系统旨在监控、识别和响应日益动态、高速和复杂的网络环境中的恶意活动,确保操作的弹性和安全性。本研究利用深度学习架构提出了网络环境中入侵检测的四种模型:卷积块注意模块(CBAM)与卷积神经网络(CNN),门控循环单元(GRU), CNN-CBAM和GRU的顺序组合,以及CNN-CBAM和GRU的并行组合。在UNSW-NB15和NSL-KDD数据集上对该系统进行了二元和多类分类任务的评估,并与文献中的其他研究进行了比较。结果表明,CNN-CBAM-GRU并行配置在UNSW-NB15和NSL-KDD上的多类分类准确率分别达到96.30%和99.56%。序列CNN-CBAM-GRU模型也提供了具有竞争力的结果,在UNSW-NB15上达到96.19%,在NSL-KDD上达到99.54%。这些发现突出了所提出的入侵检测系统在现代网络安全环境中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信