Kaixuan Zheng , Yan Liu , Lanling Lan , Yuanyuan Zhang
{"title":"Solar dual-end-pumped single crystal fiber laser with conical reflector","authors":"Kaixuan Zheng , Yan Liu , Lanling Lan , Yuanyuan Zhang","doi":"10.1016/j.yofte.2025.104390","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the output power and solar-laser conversion efficiency of a solar-pumped single crystal fiber (SCF) laser, we propose a dual-end-pumped configuration based on a hollow conical reflector. The three-stage solar concentrator consists of parabolic mirrors, 3D-CPCs, and hollow conical reflector, in which the SCF is placed. The DDE is used to establish an information exchange channel between Matlab and TracePro to optimize the position of the SCF based on simulated annealing algorithm. For the same sunlight-receiving area (1.2 m<sup>2</sup>), ray tracing with Tracepro shows that the solar power absorbed by the dual-end-pumped SCF (Φ1 × 100 mm, 1at.% doping concentration) is enhanced by 48.03 % compared to the single-end-pumped configuration when the third-stage concentrator is a hollow cylindrical reflector. When the third-stage concentrator is a 2-stage conical reflector, the solar power absorbed by the SCF can be effectively improved and reach 140.81 W. Solving the rate equations and the power transmission equations, the maximum laser output power and the solar-laser conversion efficiency of the solar pumped SCF laser are 47.84 W and 3.96 %.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"95 ","pages":"Article 104390"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520025002652","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the output power and solar-laser conversion efficiency of a solar-pumped single crystal fiber (SCF) laser, we propose a dual-end-pumped configuration based on a hollow conical reflector. The three-stage solar concentrator consists of parabolic mirrors, 3D-CPCs, and hollow conical reflector, in which the SCF is placed. The DDE is used to establish an information exchange channel between Matlab and TracePro to optimize the position of the SCF based on simulated annealing algorithm. For the same sunlight-receiving area (1.2 m2), ray tracing with Tracepro shows that the solar power absorbed by the dual-end-pumped SCF (Φ1 × 100 mm, 1at.% doping concentration) is enhanced by 48.03 % compared to the single-end-pumped configuration when the third-stage concentrator is a hollow cylindrical reflector. When the third-stage concentrator is a 2-stage conical reflector, the solar power absorbed by the SCF can be effectively improved and reach 140.81 W. Solving the rate equations and the power transmission equations, the maximum laser output power and the solar-laser conversion efficiency of the solar pumped SCF laser are 47.84 W and 3.96 %.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.