Covalent organic frameworks-based sensors for the detection of neurotransmitters associated with neurogenic diseases

IF 4.9 Q1 CHEMISTRY, ANALYTICAL
Mina Adampourezare , Leila Mehdizadeh Fanid , Behzad Nikzad
{"title":"Covalent organic frameworks-based sensors for the detection of neurotransmitters associated with neurogenic diseases","authors":"Mina Adampourezare ,&nbsp;Leila Mehdizadeh Fanid ,&nbsp;Behzad Nikzad","doi":"10.1016/j.sbsr.2025.100875","DOIUrl":null,"url":null,"abstract":"<div><div>Neurotransmitters (NTs) are critical chemical compounds responsible for transmitting neural signals across synapses between neurons. These molecules play a fundamental role in regulating neuronal activity and maintaining the functional balance of the central nervous system. Disruptions in the balance or function of neurotransmitters can lead to the development of neurodegenerative diseases and associated with impairments in cognitive and motor functions. Covalent Organic Frameworks (COFs) seem to be as excellent candidates for NT detection due to their exceptional porosity, tunable functionality, and stability. NTs interact with COFs through mechanisms like chemical binding with NH₂ groups, hydrogen bonding, and electron transfer, leading to measurable fluorescence or electrochemical changes.</div><div>COFs have been integrated into various biosensors, including optical and electrochemical platforms, to enhance NT detection. Fluorescent COFs indicate NT presence through emission shifts, while electrochemical COFs enable sensitive detection via voltammetry. Additionally, surface-enhanced Raman spectroscopy (SERS) leverages COFs functionalized with metallic nanoparticles for precise identification. This study explores the role of COFs in identifying and recognizing neurotransmitters.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100875"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180425001412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Neurotransmitters (NTs) are critical chemical compounds responsible for transmitting neural signals across synapses between neurons. These molecules play a fundamental role in regulating neuronal activity and maintaining the functional balance of the central nervous system. Disruptions in the balance or function of neurotransmitters can lead to the development of neurodegenerative diseases and associated with impairments in cognitive and motor functions. Covalent Organic Frameworks (COFs) seem to be as excellent candidates for NT detection due to their exceptional porosity, tunable functionality, and stability. NTs interact with COFs through mechanisms like chemical binding with NH₂ groups, hydrogen bonding, and electron transfer, leading to measurable fluorescence or electrochemical changes.
COFs have been integrated into various biosensors, including optical and electrochemical platforms, to enhance NT detection. Fluorescent COFs indicate NT presence through emission shifts, while electrochemical COFs enable sensitive detection via voltammetry. Additionally, surface-enhanced Raman spectroscopy (SERS) leverages COFs functionalized with metallic nanoparticles for precise identification. This study explores the role of COFs in identifying and recognizing neurotransmitters.

Abstract Image

用于检测与神经源性疾病相关的神经递质的共价有机框架传感器
神经递质(NTs)是负责在神经元之间的突触之间传递神经信号的关键化合物。这些分子在调节神经元活动和维持中枢神经系统功能平衡方面起着重要作用。神经递质平衡或功能的破坏可导致神经退行性疾病的发展,并与认知和运动功能的损害有关。共价有机框架(COFs)由于其独特的孔隙度、可调的功能和稳定性,似乎是NT检测的优秀候选者。NTs通过与NH₂基团的化学结合、氢键和电子转移等机制与COFs相互作用,导致可测量的荧光或电化学变化。COFs已被集成到各种生物传感器中,包括光学和电化学平台,以增强NT检测。荧光COFs通过发射位移表明NT的存在,而电化学COFs通过伏安法进行灵敏检测。此外,表面增强拉曼光谱(SERS)利用金属纳米颗粒功能化的COFs进行精确识别。本研究探讨了COFs在识别和识别神经递质的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信