Two dimensional chaotic mapping zebra optimization algorithm in polar coordinate system for debutanizer column feature selection and prediction model

IF 7.9 Q1 ENGINEERING, MULTIDISCIPLINARY
Yi-Peng Shang-Guan, Jie-Sheng Wang, Yu-Feng Sun, Yi-Xuan Li, Bing Yan
{"title":"Two dimensional chaotic mapping zebra optimization algorithm in polar coordinate system for debutanizer column feature selection and prediction model","authors":"Yi-Peng Shang-Guan,&nbsp;Jie-Sheng Wang,&nbsp;Yu-Feng Sun,&nbsp;Yi-Xuan Li,&nbsp;Bing Yan","doi":"10.1016/j.rineng.2025.107127","DOIUrl":null,"url":null,"abstract":"<div><div>Soft-sensor technology predicts quality variables hard for hard instruments to measure directly, but input variables have redundancy. Thus, feature selection is needed to reduce data dimensionality and improve prediction accuracy. Aiming at data feature selection and prediction model solution in debutanizer column production, a two-dimensional chaotic mapping zebra optimization algorithm (ZOA) in polar coordinate system is proposed. Firstly, coupled and uncoupled polar coordinate two-dimensional chaotic convergence factors are designed to optimize foraging stage for dynamic balance of exploitation and exploration. Then, the position information of attacked individuals and a sinusoidal increment term are introduced to improve the defense stage, avoiding blind search and breaking the limitation of the original algorithm’s declining late-stage search capability. In experiments, input feature signals are first decomposed by CEEMDAN, then the improved ZOA selects the optimal feature subset for prediction. Simulation experiments include three parts: the first two determine optimal variants ZOA-cρ2 and ZOA-ucρ2 via CEC2022 test functions; the last compares the proposed algorithm with other intelligent optimization algorithms on the debutanizer column dataset. Results show that compared with predictions using only original input features, the prediction results of the feature subset selected by ZOA-cρ2 decrease by 99.86 %, 96.24 % and 96.26 % in MSE, RMSE and MAE, respectively, and increase by 84.63 % in R², proving ZOA-cρ2 has great advantages in solving feature selection and prediction model tasks.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"28 ","pages":"Article 107127"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025031822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soft-sensor technology predicts quality variables hard for hard instruments to measure directly, but input variables have redundancy. Thus, feature selection is needed to reduce data dimensionality and improve prediction accuracy. Aiming at data feature selection and prediction model solution in debutanizer column production, a two-dimensional chaotic mapping zebra optimization algorithm (ZOA) in polar coordinate system is proposed. Firstly, coupled and uncoupled polar coordinate two-dimensional chaotic convergence factors are designed to optimize foraging stage for dynamic balance of exploitation and exploration. Then, the position information of attacked individuals and a sinusoidal increment term are introduced to improve the defense stage, avoiding blind search and breaking the limitation of the original algorithm’s declining late-stage search capability. In experiments, input feature signals are first decomposed by CEEMDAN, then the improved ZOA selects the optimal feature subset for prediction. Simulation experiments include three parts: the first two determine optimal variants ZOA-cρ2 and ZOA-ucρ2 via CEC2022 test functions; the last compares the proposed algorithm with other intelligent optimization algorithms on the debutanizer column dataset. Results show that compared with predictions using only original input features, the prediction results of the feature subset selected by ZOA-cρ2 decrease by 99.86 %, 96.24 % and 96.26 % in MSE, RMSE and MAE, respectively, and increase by 84.63 % in R², proving ZOA-cρ2 has great advantages in solving feature selection and prediction model tasks.
极坐标下二维混沌映射斑马优化算法用于脱坦器柱特征选择与预测模型
软测量技术预测硬仪器难以直接测量的质量变量,但输入变量具有冗余性。因此,需要通过特征选择来降低数据维数,提高预测精度。针对脱塔塔生产中的数据特征选择和预测模型求解问题,提出了一种极坐标下的二维混沌映射斑马优化算法(ZOA)。首先,设计耦合和非耦合极坐标二维混沌收敛因子,优化觅食阶段,实现开发与探索的动态平衡;然后,引入被攻击个体的位置信息和正弦增量项来改进防御阶段,避免了盲目搜索,打破了原算法后期搜索能力下降的限制;在实验中,输入的特征信号首先由CEEMDAN进行分解,然后改进的ZOA选择最优的特征子集进行预测。仿真实验包括三个部分:前两个部分通过CEC2022测试函数确定最优变量ZOA-cρ2和ZOA-ucρ2;最后在debutanizer列数据集上与其他智能优化算法进行了比较。结果表明,与仅使用原始输入特征进行预测相比,采用ZOA-cρ2选择的特征子集的预测结果在MSE、RMSE和MAE上分别降低了99.86%、96.24%和96.26%,在R²上提高了84.63%,证明了ZOA-cρ2在解决特征选择和预测模型任务方面具有很大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信