Bath temperature-dependent growth of nanocrystalline Bi2S3 films via a seed-layer-assisted approach for photoelectrochemical applications

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
U. Chalapathi , K. Ashok , Radhalayam Dhanalakshmi , Sambasivam Sangaraju , Krithikaa Mohanarangam , Vasudeva Reddy Minnam Reddy , Athipalli Divya , Adem Sreedhar , Mohd Shkir , Si-Hyun Park
{"title":"Bath temperature-dependent growth of nanocrystalline Bi2S3 films via a seed-layer-assisted approach for photoelectrochemical applications","authors":"U. Chalapathi ,&nbsp;K. Ashok ,&nbsp;Radhalayam Dhanalakshmi ,&nbsp;Sambasivam Sangaraju ,&nbsp;Krithikaa Mohanarangam ,&nbsp;Vasudeva Reddy Minnam Reddy ,&nbsp;Athipalli Divya ,&nbsp;Adem Sreedhar ,&nbsp;Mohd Shkir ,&nbsp;Si-Hyun Park","doi":"10.1016/j.physb.2025.417766","DOIUrl":null,"url":null,"abstract":"<div><div>Bismuth sulfide (Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) is a promising photoelectrode material for photoelectrochemical (PEC) water splitting, but its efficiency is limited by poor charge transport and rapid carrier recombination. In this work, Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> films were fabricated via a seed-layer-assisted chemical bath deposition process, and the influence of bath temperature on their structural, optical, and PEC properties was systematically investigated. Morphological evolution from compact grains at 30 °C to vertically aligned nanorods at 50 °C, accompanied by increased porosity at higher temperatures, was observed. Elemental analysis indicated temperature-dependent variations in the Bi/S ratio, reflecting altered growth kinetics. Optical studies revealed slight bandgap shifts, while PEC measurements showed a steady increase in photocurrent density with temperature, reaching 11.6 mA/cm<sup>2</sup> at 70 °C due to improved film thickness and porosity. The film deposited at 80 °C exhibited the highest photocurrent stability. Electrochemical impedance spectroscopy further confirmed reduced charge-transfer resistance at elevated temperatures, highlighting enhanced charge separation. These results demonstrate that bath temperature is a key parameter for tuning Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>S<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> film properties and provide a simple, scalable strategy to improve PEC water splitting efficiency.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417766"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092145262500883X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Bismuth sulfide (Bi2S3) is a promising photoelectrode material for photoelectrochemical (PEC) water splitting, but its efficiency is limited by poor charge transport and rapid carrier recombination. In this work, Bi2S3 films were fabricated via a seed-layer-assisted chemical bath deposition process, and the influence of bath temperature on their structural, optical, and PEC properties was systematically investigated. Morphological evolution from compact grains at 30 °C to vertically aligned nanorods at 50 °C, accompanied by increased porosity at higher temperatures, was observed. Elemental analysis indicated temperature-dependent variations in the Bi/S ratio, reflecting altered growth kinetics. Optical studies revealed slight bandgap shifts, while PEC measurements showed a steady increase in photocurrent density with temperature, reaching 11.6 mA/cm2 at 70 °C due to improved film thickness and porosity. The film deposited at 80 °C exhibited the highest photocurrent stability. Electrochemical impedance spectroscopy further confirmed reduced charge-transfer resistance at elevated temperatures, highlighting enhanced charge separation. These results demonstrate that bath temperature is a key parameter for tuning Bi2S3 film properties and provide a simple, scalable strategy to improve PEC water splitting efficiency.
基于光电化学应用的种子层辅助方法的纳米晶Bi2S3膜的浴温依赖生长
硫化铋(Bi2S3)是一种很有前途的用于光电化学(PEC)水分解的光电极材料,但其效率受到电荷输运差和载流子重组快的限制。本文采用种子层辅助化学浴沉积工艺制备了Bi2S3薄膜,并系统研究了镀液温度对其结构、光学和PEC性能的影响。观察到从30°C致密颗粒到50°C垂直排列的纳米棒的形态演变,并伴随着高温下孔隙率的增加。元素分析显示Bi/S比的温度依赖性变化,反映了生长动力学的改变。光学研究显示了轻微的带隙位移,而PEC测量显示光电流密度随着温度的升高而稳定增加,由于薄膜厚度和孔隙率的提高,在70°C时达到11.6 mA/cm2。在80°C下沉积的薄膜具有最高的光电流稳定性。电化学阻抗谱进一步证实了高温下电荷转移电阻的降低,突出了电荷分离的增强。这些结果表明,浴液温度是调节Bi2S3膜性能的关键参数,并提供了一种简单、可扩展的策略来提高PEC的水分解效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信